Dynamically-biased fixed-point LSTM for time series processing in AIoT edge device

In this paper, a Dynamically-Biased Long Short-Term Memory (DB-LSTM) neural network architecture is proposed for artificial intelligence internet of things (AIoT) applications. Different from the conventional LSTM which uses static bias, DB-LSTM adjusts the cell bias dynamically based on the previou...

全面介紹

Saved in:
書目詳細資料
Main Authors: Hu, Jinhai, Goh, Wang Ling, Gao, Yuan
其他作者: School of Electrical and Electronic Engineering
格式: Conference or Workshop Item
語言:English
出版: 2024
主題:
在線閱讀:https://hdl.handle.net/10356/179102
https://ieeexplore.ieee.org/abstract/document/9458508
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English

相似書籍