Classification of ECG anomaly with dynamically-biased LSTM for continuous cardiac monitoring

This paper presents an electrocardiogram (ECG) signal classification model based on dynamically-biased Long Short-Term Memory (DB-LSTM) network. Compared to conventional LSTM networks, DB-LSTM introduces a set of parameters C which save the previous time-step cell gate states of the unit cell. Hence...

全面介紹

Saved in:
書目詳細資料
Main Authors: Hu, Jinhai, Goh, Wang Ling, Gao, Yuan
其他作者: School of Electrical and Electronic Engineering
格式: Conference or Workshop Item
語言:English
出版: 2024
主題:
在線閱讀:https://hdl.handle.net/10356/179112
https://ieeexplore.ieee.org/abstract/document/10181690
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!