Classification of ECG anomaly with dynamically-biased LSTM for continuous cardiac monitoring

This paper presents an electrocardiogram (ECG) signal classification model based on dynamically-biased Long Short-Term Memory (DB-LSTM) network. Compared to conventional LSTM networks, DB-LSTM introduces a set of parameters C which save the previous time-step cell gate states of the unit cell. Hence...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Hu, Jinhai, Goh, Wang Ling, Gao, Yuan
مؤلفون آخرون: School of Electrical and Electronic Engineering
التنسيق: Conference or Workshop Item
اللغة:English
منشور في: 2024
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/179112
https://ieeexplore.ieee.org/abstract/document/10181690
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English