Performance studies of wireless communication systems with selection diversity
This report assesses the performance of selection diversity receiver in a slow, frequency-flat-fading channel in the presence of additive white Gaussian noise (AWGN). The signals are binary phase-shift keying (BPSK) or binary frequency-shift keying (BFSK) modulated. The fading channels include Rayle...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2009
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/17936 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-17936 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-179362023-07-07T16:08:56Z Performance studies of wireless communication systems with selection diversity Zhu, Yunfeng. Li Kwok Hung Teh Kah Chan School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering::Wireless communication systems This report assesses the performance of selection diversity receiver in a slow, frequency-flat-fading channel in the presence of additive white Gaussian noise (AWGN). The signals are binary phase-shift keying (BPSK) or binary frequency-shift keying (BFSK) modulated. The fading channels include Rayleigh, Rician, and Nakagami-m fading channels. Simulations are done for the case where the fading variables for each channel are independent of each other. In that case, the analysis of the wireless system is fairly straightforward and theoretical expressions for the signal to noise ratio (SNR) and bit-error rate (BER) can be easily derived, which enables comparisons with simulated fading. In this project, equal-gain combining (EGC) and maximum-ratio combining (MRC) are also studied, and the simulation results are used to compare with selection diversity combining (SDC). Some conclusions can be drawn from this project. Signals have better performance when using BPSK modulation than using BFSK modulation. Rayleigh fading channel has the most fading effect compared with Rician and Nakagami-m fading channel. When diversity combining techniques are employed at the receiver, MRC is found to have the best performance, followed by EGC and SDC. It is also found that SDC and EGC have simpler receiver structure compared with MRC. SDC can be applied in both coherent and non-coherent detection. Bachelor of Engineering 2009-06-18T02:27:18Z 2009-06-18T02:27:18Z 2009 2009 Final Year Project (FYP) http://hdl.handle.net/10356/17936 en Nanyang Technological University 47 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Electrical and electronic engineering::Wireless communication systems |
spellingShingle |
DRNTU::Engineering::Electrical and electronic engineering::Wireless communication systems Zhu, Yunfeng. Performance studies of wireless communication systems with selection diversity |
description |
This report assesses the performance of selection diversity receiver in a slow, frequency-flat-fading channel in the presence of additive white Gaussian noise (AWGN). The signals are binary phase-shift keying (BPSK) or binary frequency-shift keying (BFSK) modulated. The fading channels include Rayleigh, Rician, and Nakagami-m fading channels. Simulations are done for the case where the fading variables for each channel are independent of each other. In that case, the analysis of the wireless system is fairly straightforward and theoretical expressions for the signal to noise ratio (SNR) and bit-error rate (BER) can be easily derived, which enables comparisons with simulated fading. In this project, equal-gain combining (EGC) and maximum-ratio combining (MRC) are also studied, and the simulation results are used to compare with selection diversity combining (SDC). Some conclusions can be drawn from this project. Signals have better performance when using BPSK modulation than using BFSK modulation. Rayleigh fading channel has the most fading effect compared with Rician and Nakagami-m fading channel. When diversity combining techniques are employed at the receiver, MRC is found to have the best performance, followed by EGC and SDC. It is also found that SDC and EGC have simpler receiver structure compared with MRC. SDC can be applied in both coherent and non-coherent detection. |
author2 |
Li Kwok Hung |
author_facet |
Li Kwok Hung Zhu, Yunfeng. |
format |
Final Year Project |
author |
Zhu, Yunfeng. |
author_sort |
Zhu, Yunfeng. |
title |
Performance studies of wireless communication systems with selection diversity |
title_short |
Performance studies of wireless communication systems with selection diversity |
title_full |
Performance studies of wireless communication systems with selection diversity |
title_fullStr |
Performance studies of wireless communication systems with selection diversity |
title_full_unstemmed |
Performance studies of wireless communication systems with selection diversity |
title_sort |
performance studies of wireless communication systems with selection diversity |
publishDate |
2009 |
url |
http://hdl.handle.net/10356/17936 |
_version_ |
1772827867005059072 |