AI is a viable alternative to high throughput screening: a 318-target study

High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that...

Full description

Saved in:
Bibliographic Details
Main Authors: Wallach, Izhar, Bernard, Denzil, Nguyen, Kong, Ho, Gregory, Morrison, Adrian, Stecula, Adrian, Rosnik, Andreana, O’Sullivan, Ann Marie, Davtyan, Aram, Samudio, Ben, Thomas, Bill, Worley, Brad, Butler, Brittany, Laggner, Christian, Thayer, Desiree, Moharreri, Ehsan, Friedland, Greg, Truong, Ha, van den Bedem, Henry, Ng, Ho Leung, Stafford, Kate, Sarangapani, Krishna, Giesler, Kyle, Ngo, Lien, Mysinger, Michael, Ahmed, Mostafa, Anthis, Nicholas J., Henriksen, Niel, Gniewek, Pawel, Eckert, Sam, de Oliveira, Saulo, Suterwala, Shabbir, PrasadPrasad, Srimukh Veccham Krishna, Shek, Stefani, Contreras, Stephanie, Hare, Stephanie, Palazzo, Teresa, O’Brien, Terrence E., Van Grack, Tessa, Williams, Tiffany, Chern, Ting-Rong, Kenyon, Victor, Lee, Andreia H., Cann, Andrew B., Bergman, Bastiaan, Anderson, Brandon M., Cox, Bryan D., Warrington, Jeffrey M., Sorenson, Jon M., Goldenberg, Joshua M., Young, Matthew A., DeHaan, Nicholas, Pemberton, Ryan P., Schroedl, Stefan, Abramyan, Tigran M., Gupta, Tushita, Mysore, Venkatesh, Presser, Adam G., Ferrando, Adolfo A., Andricopulo, Adriano D., Ghosh, Agnidipta, Ayachi, Aicha Gharbi, Mushtaq, Aisha, Shaqra, Ala M., Toh, Alan Kie Leong, Smrcka, Alan V., Ciccia, Alberto, de Oliveira, Aldo Sena, Sverzhinsky, Aleksandr, de Sousa, Alessandra Mara, Agoulnik, Alexander I., Kushnir, Alexander, Freiberg, Alexander N., Statsyuk, Alexander V., Gingras, Alexandre R., Degterev, Alexei, Tomilov, Alexey, Vrielink, Alice, Garaeva, Alisa A., Bryant-Friedrich, Amanda, Caflisch, Amedeo, Patel, Amit K., Rangarajan, Amith Vikram, Matheeussen, An, Battistoni, Andrea, Caporali, Andrea, Chini, Andrea, Ilari, Andrea, Mattevi, Andrea, Foote, Andrea Talbot, Trabocchi, Andrea, Stahl, Andreas, Herr, Andrew B., Berti, Andrew, Freywald, Andrew, Reidenbach, Andrew G., Lam, Andrew, Cuddihy, Andrew R., White, Andrew, Taglialatela, Angelo
Other Authors: School of Biological Sciences
Format: Article
Language:English
Published: 2024
Subjects:
AI
Online Access:https://hdl.handle.net/10356/179577
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-179577
record_format dspace
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Medicine, Health and Life Sciences
High throughput screening
AI
spellingShingle Medicine, Health and Life Sciences
High throughput screening
AI
Wallach, Izhar
Bernard, Denzil
Nguyen, Kong
Ho, Gregory
Morrison, Adrian
Stecula, Adrian
Rosnik, Andreana
O’Sullivan, Ann Marie
Davtyan, Aram
Samudio, Ben
Thomas, Bill
Worley, Brad
Butler, Brittany
Laggner, Christian
Thayer, Desiree
Moharreri, Ehsan
Friedland, Greg
Truong, Ha
van den Bedem, Henry
Ng, Ho Leung
Stafford, Kate
Sarangapani, Krishna
Giesler, Kyle
Ngo, Lien
Mysinger, Michael
Ahmed, Mostafa
Anthis, Nicholas J.
Henriksen, Niel
Gniewek, Pawel
Eckert, Sam
de Oliveira, Saulo
Suterwala, Shabbir
PrasadPrasad, Srimukh Veccham Krishna
Shek, Stefani
Contreras, Stephanie
Hare, Stephanie
Palazzo, Teresa
O’Brien, Terrence E.
Van Grack, Tessa
Williams, Tiffany
Chern, Ting-Rong
Kenyon, Victor
Lee, Andreia H.
Cann, Andrew B.
Bergman, Bastiaan
Anderson, Brandon M.
Cox, Bryan D.
Warrington, Jeffrey M.
Sorenson, Jon M.
Goldenberg, Joshua M.
Young, Matthew A.
DeHaan, Nicholas
Pemberton, Ryan P.
Schroedl, Stefan
Abramyan, Tigran M.
Gupta, Tushita
Mysore, Venkatesh
Presser, Adam G.
Ferrando, Adolfo A.
Andricopulo, Adriano D.
Ghosh, Agnidipta
Ayachi, Aicha Gharbi
Mushtaq, Aisha
Shaqra, Ala M.
Toh, Alan Kie Leong
Smrcka, Alan V.
Ciccia, Alberto
de Oliveira, Aldo Sena
Sverzhinsky, Aleksandr
de Sousa, Alessandra Mara
Agoulnik, Alexander I.
Kushnir, Alexander
Freiberg, Alexander N.
Statsyuk, Alexander V.
Gingras, Alexandre R.
Degterev, Alexei
Tomilov, Alexey
Vrielink, Alice
Garaeva, Alisa A.
Bryant-Friedrich, Amanda
Caflisch, Amedeo
Patel, Amit K.
Rangarajan, Amith Vikram
Matheeussen, An
Battistoni, Andrea
Caporali, Andrea
Chini, Andrea
Ilari, Andrea
Mattevi, Andrea
Foote, Andrea Talbot
Trabocchi, Andrea
Stahl, Andreas
Herr, Andrew B.
Berti, Andrew
Freywald, Andrew
Reidenbach, Andrew G.
Lam, Andrew
Cuddihy, Andrew R.
White, Andrew
Taglialatela, Angelo
AI is a viable alternative to high throughput screening: a 318-target study
description High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery.
author2 School of Biological Sciences
author_facet School of Biological Sciences
Wallach, Izhar
Bernard, Denzil
Nguyen, Kong
Ho, Gregory
Morrison, Adrian
Stecula, Adrian
Rosnik, Andreana
O’Sullivan, Ann Marie
Davtyan, Aram
Samudio, Ben
Thomas, Bill
Worley, Brad
Butler, Brittany
Laggner, Christian
Thayer, Desiree
Moharreri, Ehsan
Friedland, Greg
Truong, Ha
van den Bedem, Henry
Ng, Ho Leung
Stafford, Kate
Sarangapani, Krishna
Giesler, Kyle
Ngo, Lien
Mysinger, Michael
Ahmed, Mostafa
Anthis, Nicholas J.
Henriksen, Niel
Gniewek, Pawel
Eckert, Sam
de Oliveira, Saulo
Suterwala, Shabbir
PrasadPrasad, Srimukh Veccham Krishna
Shek, Stefani
Contreras, Stephanie
Hare, Stephanie
Palazzo, Teresa
O’Brien, Terrence E.
Van Grack, Tessa
Williams, Tiffany
Chern, Ting-Rong
Kenyon, Victor
Lee, Andreia H.
Cann, Andrew B.
Bergman, Bastiaan
Anderson, Brandon M.
Cox, Bryan D.
Warrington, Jeffrey M.
Sorenson, Jon M.
Goldenberg, Joshua M.
Young, Matthew A.
DeHaan, Nicholas
Pemberton, Ryan P.
Schroedl, Stefan
Abramyan, Tigran M.
Gupta, Tushita
Mysore, Venkatesh
Presser, Adam G.
Ferrando, Adolfo A.
Andricopulo, Adriano D.
Ghosh, Agnidipta
Ayachi, Aicha Gharbi
Mushtaq, Aisha
Shaqra, Ala M.
Toh, Alan Kie Leong
Smrcka, Alan V.
Ciccia, Alberto
de Oliveira, Aldo Sena
Sverzhinsky, Aleksandr
de Sousa, Alessandra Mara
Agoulnik, Alexander I.
Kushnir, Alexander
Freiberg, Alexander N.
Statsyuk, Alexander V.
Gingras, Alexandre R.
Degterev, Alexei
Tomilov, Alexey
Vrielink, Alice
Garaeva, Alisa A.
Bryant-Friedrich, Amanda
Caflisch, Amedeo
Patel, Amit K.
Rangarajan, Amith Vikram
Matheeussen, An
Battistoni, Andrea
Caporali, Andrea
Chini, Andrea
Ilari, Andrea
Mattevi, Andrea
Foote, Andrea Talbot
Trabocchi, Andrea
Stahl, Andreas
Herr, Andrew B.
Berti, Andrew
Freywald, Andrew
Reidenbach, Andrew G.
Lam, Andrew
Cuddihy, Andrew R.
White, Andrew
Taglialatela, Angelo
format Article
author Wallach, Izhar
Bernard, Denzil
Nguyen, Kong
Ho, Gregory
Morrison, Adrian
Stecula, Adrian
Rosnik, Andreana
O’Sullivan, Ann Marie
Davtyan, Aram
Samudio, Ben
Thomas, Bill
Worley, Brad
Butler, Brittany
Laggner, Christian
Thayer, Desiree
Moharreri, Ehsan
Friedland, Greg
Truong, Ha
van den Bedem, Henry
Ng, Ho Leung
Stafford, Kate
Sarangapani, Krishna
Giesler, Kyle
Ngo, Lien
Mysinger, Michael
Ahmed, Mostafa
Anthis, Nicholas J.
Henriksen, Niel
Gniewek, Pawel
Eckert, Sam
de Oliveira, Saulo
Suterwala, Shabbir
PrasadPrasad, Srimukh Veccham Krishna
Shek, Stefani
Contreras, Stephanie
Hare, Stephanie
Palazzo, Teresa
O’Brien, Terrence E.
Van Grack, Tessa
Williams, Tiffany
Chern, Ting-Rong
Kenyon, Victor
Lee, Andreia H.
Cann, Andrew B.
Bergman, Bastiaan
Anderson, Brandon M.
Cox, Bryan D.
Warrington, Jeffrey M.
Sorenson, Jon M.
Goldenberg, Joshua M.
Young, Matthew A.
DeHaan, Nicholas
Pemberton, Ryan P.
Schroedl, Stefan
Abramyan, Tigran M.
Gupta, Tushita
Mysore, Venkatesh
Presser, Adam G.
Ferrando, Adolfo A.
Andricopulo, Adriano D.
Ghosh, Agnidipta
Ayachi, Aicha Gharbi
Mushtaq, Aisha
Shaqra, Ala M.
Toh, Alan Kie Leong
Smrcka, Alan V.
Ciccia, Alberto
de Oliveira, Aldo Sena
Sverzhinsky, Aleksandr
de Sousa, Alessandra Mara
Agoulnik, Alexander I.
Kushnir, Alexander
Freiberg, Alexander N.
Statsyuk, Alexander V.
Gingras, Alexandre R.
Degterev, Alexei
Tomilov, Alexey
Vrielink, Alice
Garaeva, Alisa A.
Bryant-Friedrich, Amanda
Caflisch, Amedeo
Patel, Amit K.
Rangarajan, Amith Vikram
Matheeussen, An
Battistoni, Andrea
Caporali, Andrea
Chini, Andrea
Ilari, Andrea
Mattevi, Andrea
Foote, Andrea Talbot
Trabocchi, Andrea
Stahl, Andreas
Herr, Andrew B.
Berti, Andrew
Freywald, Andrew
Reidenbach, Andrew G.
Lam, Andrew
Cuddihy, Andrew R.
White, Andrew
Taglialatela, Angelo
author_sort Wallach, Izhar
title AI is a viable alternative to high throughput screening: a 318-target study
title_short AI is a viable alternative to high throughput screening: a 318-target study
title_full AI is a viable alternative to high throughput screening: a 318-target study
title_fullStr AI is a viable alternative to high throughput screening: a 318-target study
title_full_unstemmed AI is a viable alternative to high throughput screening: a 318-target study
title_sort ai is a viable alternative to high throughput screening: a 318-target study
publishDate 2024
url https://hdl.handle.net/10356/179577
_version_ 1814047386106855424
spelling sg-ntu-dr.10356-1795772024-08-12T15:31:59Z AI is a viable alternative to high throughput screening: a 318-target study Wallach, Izhar Bernard, Denzil Nguyen, Kong Ho, Gregory Morrison, Adrian Stecula, Adrian Rosnik, Andreana O’Sullivan, Ann Marie Davtyan, Aram Samudio, Ben Thomas, Bill Worley, Brad Butler, Brittany Laggner, Christian Thayer, Desiree Moharreri, Ehsan Friedland, Greg Truong, Ha van den Bedem, Henry Ng, Ho Leung Stafford, Kate Sarangapani, Krishna Giesler, Kyle Ngo, Lien Mysinger, Michael Ahmed, Mostafa Anthis, Nicholas J. Henriksen, Niel Gniewek, Pawel Eckert, Sam de Oliveira, Saulo Suterwala, Shabbir PrasadPrasad, Srimukh Veccham Krishna Shek, Stefani Contreras, Stephanie Hare, Stephanie Palazzo, Teresa O’Brien, Terrence E. Van Grack, Tessa Williams, Tiffany Chern, Ting-Rong Kenyon, Victor Lee, Andreia H. Cann, Andrew B. Bergman, Bastiaan Anderson, Brandon M. Cox, Bryan D. Warrington, Jeffrey M. Sorenson, Jon M. Goldenberg, Joshua M. Young, Matthew A. DeHaan, Nicholas Pemberton, Ryan P. Schroedl, Stefan Abramyan, Tigran M. Gupta, Tushita Mysore, Venkatesh Presser, Adam G. Ferrando, Adolfo A. Andricopulo, Adriano D. Ghosh, Agnidipta Ayachi, Aicha Gharbi Mushtaq, Aisha Shaqra, Ala M. Toh, Alan Kie Leong Smrcka, Alan V. Ciccia, Alberto de Oliveira, Aldo Sena Sverzhinsky, Aleksandr de Sousa, Alessandra Mara Agoulnik, Alexander I. Kushnir, Alexander Freiberg, Alexander N. Statsyuk, Alexander V. Gingras, Alexandre R. Degterev, Alexei Tomilov, Alexey Vrielink, Alice Garaeva, Alisa A. Bryant-Friedrich, Amanda Caflisch, Amedeo Patel, Amit K. Rangarajan, Amith Vikram Matheeussen, An Battistoni, Andrea Caporali, Andrea Chini, Andrea Ilari, Andrea Mattevi, Andrea Foote, Andrea Talbot Trabocchi, Andrea Stahl, Andreas Herr, Andrew B. Berti, Andrew Freywald, Andrew Reidenbach, Andrew G. Lam, Andrew Cuddihy, Andrew R. White, Andrew Taglialatela, Angelo School of Biological Sciences Medicine, Health and Life Sciences High throughput screening AI High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery. Published version 2024-08-12T01:58:44Z 2024-08-12T01:58:44Z 2024 Journal Article Wallach, I., Bernard, D., Nguyen, K., Ho, G., Morrison, A., Stecula, A., Rosnik, A., O’Sullivan, A. M., Davtyan, A., Samudio, B., Thomas, B., Worley, B., Butler, B., Laggner, C., Thayer, D., Moharreri, E., Friedland, G., Truong, H., van den Bedem, H., ...Taglialatela, A. (2024). AI is a viable alternative to high throughput screening: a 318-target study. Scientific Reports, 14(1), 7526-. https://dx.doi.org/10.1038/s41598-024-54655-z 2045-2322 https://hdl.handle.net/10356/179577 10.1038/s41598-024-54655-z 38565852 2-s2.0-85191821387 1 14 7526 en Scientific Reports © 2024 The Author(s). Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. application/pdf