Multi-stage generative adversarial networks for generating pavement crack images
The application of machine learning techniques in pavement health monitoring based on computer vision has greatly improved the accuracy and efficiency in the detection of pavement distress levels and categories. However, a persistent challenge in this field is the issue of sample imbalance, primaril...
Saved in:
Main Authors: | Han, Chengjia, Ma, Tao, Huyan, Ju, Tong, Zheng, Yang, Handuo, Yang, Yaowen |
---|---|
其他作者: | School of Civil and Environmental Engineering |
格式: | Article |
語言: | English |
出版: |
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/180178 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
CrackDiffusion: a two-stage semantic segmentation framework for pavement crack combining unsupervised and supervised processes
由: Han, Chengjia, et al.
出版: (2024) -
Be a cartoonist : editing anime images using generative adversarial network
由: Koh, Tong Liang
出版: (2022) -
Augmenting image data using generative adversarial networks (GAN)
由: Liu, Xinchi
出版: (2024) -
Automatic pixel-level pavement crack detection using information of multi-scale neighborhoods
由: Ai, Dihao, et al.
出版: (2018) -
A review on generative adversarial networks: algorithms, theory, and applications
由: Gui, Jie, et al.
出版: (2022)