Multi-scale CuS-rGO pyramidal photothermal structure for highly efficient solar-driven water evaporation and thermoelectric power generation
Integrated water evaporation and thermoelectric power generation system (IWETPGS) has been recognized to be a promising strategy for the utilization of solar energy. Herein, we developed a new type of IWETPGS with multi-scale pyramidal photothermal structures. They featured three-dimensional pyramid...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/180326 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Integrated water evaporation and thermoelectric power generation system (IWETPGS) has been recognized to be a promising strategy for the utilization of solar energy. Herein, we developed a new type of IWETPGS with multi-scale pyramidal photothermal structures. They featured three-dimensional pyramidal structures with microscale gradient porous copper foams, as well as micro/nanoscale CuS nanowires and reduced graphene oxide (rGO) composite materials. They combined the merits of efficient multiple refraction and absorption of light, broad-spectrum absorption capabilities of rGO and high near-infrared extinction coefficient of CuS, as well as fast water transportation by gradient porous matrix. These photothermal structures induced a photothermal conversion efficiency of 97.6%. An IWETPGS integrating these structures with a thermoelectric generator (TEG) and microchannel heat sink was developed, and outstanding evaporation and output power performance were obtained simultaneously with an evaporation rate of 2.29 kg/m2h and maximum output power of 1.32 W/m2 under 1 sun illumination. Outdoor tests showed that an average daily water production of 12.1 kg/m2 and a maximum power generation of 5.55 W/m2 was obtained. This work provides a high-performance multi-scale CuS-rGO pyramidal photothermal structure to achieve freshwater and thermoelectric power co-generation, which provides potential opportunities for freshwater and electricity supply in remote areas. |
---|