A radio frequency track-and-hold amplifier and fast-transient low dropout regulator -cum- latching current limiter for 6G communications
Field programmable gate arrays (FPGAs) are extensively applied in different fields, especially the satellite communication which would be integrated with the terrestrial network in the impending 6G communication. To accommodate higher requirements on the concurrent multiband processing capability, t...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis-Doctor of Philosophy |
Language: | English |
Published: |
Nanyang Technological University
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/180511 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-180511 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1805112024-11-01T08:23:04Z A radio frequency track-and-hold amplifier and fast-transient low dropout regulator -cum- latching current limiter for 6G communications Zheng, Zixian Chang Joseph School of Electrical and Electronic Engineering EJSCHANG@ntu.edu.sg Engineering Field programmable gate arrays (FPGAs) are extensively applied in different fields, especially the satellite communication which would be integrated with the terrestrial network in the impending 6G communication. To accommodate higher requirements on the concurrent multiband processing capability, the direct sampling architecture becomes an optimum alternative for the embedded transceiver in the next-generation satellite-dedicated FPGA. Hence, as the core interface, a wideband (Ku band) radio frequency track-and-hold amplifier (RF THA) is worth further research. Due to the multi-processors’ integration trend, and the ever-increasing stringent requirements on power supplies of crucial blocks in the advanced FPGA, e.g., the programmable logics, a low dropout voltage regulator (LDO) that features excellent transient performance and high load current capability (>1A) is increasingly important. Moreover, considering the satellite application, a protection mechanism against the load anomalies is imperative to realize in the LDO to ensure the reliable operation of the FPGA in space. In this thesis, a single-to-differential sub-sampling RF THA featuring wide-bandwidth and high-linearity, and a fast-transient LDO with an innovative protection mechanism against load anomalies have been designed and monolithically realized. Doctor of Philosophy 2024-10-14T07:18:17Z 2024-10-14T07:18:17Z 2024 Thesis-Doctor of Philosophy Zheng, Z. (2024). A radio frequency track-and-hold amplifier and fast-transient low dropout regulator -cum- latching current limiter for 6G communications. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/180511 https://hdl.handle.net/10356/180511 10.32657/10356/180511 en This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). application/pdf Nanyang Technological University |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering |
spellingShingle |
Engineering Zheng, Zixian A radio frequency track-and-hold amplifier and fast-transient low dropout regulator -cum- latching current limiter for 6G communications |
description |
Field programmable gate arrays (FPGAs) are extensively applied in different fields, especially the satellite communication which would be integrated with the terrestrial network in the impending 6G communication. To accommodate higher requirements on the concurrent multiband processing capability, the direct sampling architecture becomes an optimum alternative for the embedded transceiver in the next-generation satellite-dedicated FPGA. Hence, as the core interface, a wideband (Ku band) radio frequency track-and-hold amplifier (RF THA) is worth further research.
Due to the multi-processors’ integration trend, and the ever-increasing stringent requirements on power supplies of crucial blocks in the advanced FPGA, e.g., the programmable logics, a low dropout voltage regulator (LDO) that features excellent transient performance and high load current capability (>1A) is increasingly important. Moreover, considering the satellite application, a protection mechanism against the load anomalies is imperative to realize in the LDO to ensure the reliable operation of the FPGA in space.
In this thesis, a single-to-differential sub-sampling RF THA featuring wide-bandwidth and high-linearity, and a fast-transient LDO with an innovative protection mechanism against load anomalies have been designed and monolithically realized. |
author2 |
Chang Joseph |
author_facet |
Chang Joseph Zheng, Zixian |
format |
Thesis-Doctor of Philosophy |
author |
Zheng, Zixian |
author_sort |
Zheng, Zixian |
title |
A radio frequency track-and-hold amplifier and fast-transient low dropout regulator -cum- latching current limiter for 6G communications |
title_short |
A radio frequency track-and-hold amplifier and fast-transient low dropout regulator -cum- latching current limiter for 6G communications |
title_full |
A radio frequency track-and-hold amplifier and fast-transient low dropout regulator -cum- latching current limiter for 6G communications |
title_fullStr |
A radio frequency track-and-hold amplifier and fast-transient low dropout regulator -cum- latching current limiter for 6G communications |
title_full_unstemmed |
A radio frequency track-and-hold amplifier and fast-transient low dropout regulator -cum- latching current limiter for 6G communications |
title_sort |
radio frequency track-and-hold amplifier and fast-transient low dropout regulator -cum- latching current limiter for 6g communications |
publisher |
Nanyang Technological University |
publishDate |
2024 |
url |
https://hdl.handle.net/10356/180511 |
_version_ |
1814777738809049088 |