Speech emotion analysis

Emotion recognition in speech has become increasingly important mainly due to the prevailing usage of speech in human-computer interaction. However, the studies done in the last century are still not enough to achieve satisfactory accuracies for the speech emotion recognition system. Therefore, this...

Full description

Saved in:
Bibliographic Details
Main Author: Poh, Esther Ee Chen.
Other Authors: Ser Wee
Format: Final Year Project
Language:English
Published: 2009
Subjects:
Online Access:http://hdl.handle.net/10356/18054
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Emotion recognition in speech has become increasingly important mainly due to the prevailing usage of speech in human-computer interaction. However, the studies done in the last century are still not enough to achieve satisfactory accuracies for the speech emotion recognition system. Therefore, this project seeks to investigate the performance of a speech recognition system implemented using the Probabilistic Neural Networks (PNN) under various conditions and parameters. A speaker-gender independent, gender dependent and speaker dependent system were performed using four different feature set namely Pitch and Energy, formants, LPCC and MFCC. In addition, difference in the effect of using a 15-emotion set and a 5-emotion set were also investigated in this project. Experimental results showed that a speaker-dependent system produces higher accuracy as the system is able to account for variability existing between different speakers. It also shows that MFCC outperforms the rest of the speech features in terms of accuracy but lowest performance in terms of speed. Also, a dataset with less emotion classes also proved to improve the accuracies significantly as compared to a larger emotion set due to the reduction in sources of confusion between various emotional states.