From swamp to sea: quantifying terrestrial dissolved organic carbon in a tropical shelf sea using hydrogen isotope ratios

Dissolved organic carbon (DOC) is a key component of coastal biogeochemical cycles, but its composition and reactivity depend on the relative contribution of autochthonous aquatic versus allochthonous terrigenous DOC (tDOC). In complex coastal waters, tDOC is commonly quantified using the bulk DOC s...

Full description

Saved in:
Bibliographic Details
Main Authors: Wahyudi, A'an Johan, Kaushal, Nikita, Gudasz, Cristian, Martin, Patrick
Other Authors: Asian School of the Environment
Format: Article
Language:English
Published: 2024
Subjects:
Online Access:https://hdl.handle.net/10356/180577
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Dissolved organic carbon (DOC) is a key component of coastal biogeochemical cycles, but its composition and reactivity depend on the relative contribution of autochthonous aquatic versus allochthonous terrigenous DOC (tDOC). In complex coastal waters, tDOC is commonly quantified using the bulk DOC stable carbon isotope ratio (δ13CDOC). However, several limitations can hamper the use of δ13CDOC in marine ecosystems, such as (1) the narrow and often overlapping separation of the autochthonous and allochthonous endmembers, and (2) mineralization of tDOC to dissolved inorganic carbon creates a reservoir effect such that autochthonous DOC can acquire a terrigenous-like δ13CDOC. The stable isotope ratio of non-exchangeable hydrogen in the DOC (δ2Hn) has emerged as a new tool that can potentially overcome these limitations: (1) δ2Hn has a large separation between aquatic and terrigenous endmembers (>50‰) and (2) it is not subject to reservoir effects caused by tDOC mineralization. Here, we evaluate the potential of δ2Hn obtained from solid phase-extracted dissolved organic matter (SPE-DOM), by comparing it to δ13CDOC and chromophoric DOM (CDOM) optical properties. We collected samples at a site in Southeast Asia's Sunda Shelf that experiences substantial seasonal variation in tDOC input, driven primarily by the monsoon-induced physical advection of peatland-derived tDOC. Over a 1-year monthly time series, the terrigenous fraction of DOC (fterr) determined using δ2Hn of SPE-DOM and δ13CDOC of bulk DOC was well correlated (r2 = 0.42), and there was no significant difference in fterr between the two isotope systems. In fact, δ2Hn displayed slightly stronger correlations with salinity and CDOM optical properties compared to δ13CDOC. Our results indicate that δ2Hn of SPE-DOM is effective for quantifying tDOC across coastal gradients, potentially offering greater sensitivity than δ13CDOC, and is a viable alternative in settings where δ13CDOC is inadequate.