Three-dimensional physics-informed neural network simulation in coronary artery trees
This study introduces a novel approach using 3D Physics-Informed Neural Networks (PINNs) for simulating blood flow in coronary arteries, integrating deep learning with fundamental physics principles. By merging physics-driven models with clinical datasets, our methodology accurately predicts fractio...
محفوظ في:
المؤلفون الرئيسيون: | Alzhanov, Nursultan, Ng, Eddie Yin Kwee, Zhao, Yong |
---|---|
مؤلفون آخرون: | School of Mechanical and Aerospace Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/180591 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
مواد مشابهة
-
CFD computation of flow fractional reserve (FFR) in coronary artery trees using a novel physiologically based algorithm (PBA) under 3D steady and pulsatile flow conditions
بواسطة: Alzhanov, Nursultan, وآخرون
منشور في: (2023) -
Numerical study of physiological turbulent flows through stenosed arteries
بواسطة: Liao, W., وآخرون
منشور في: (2014) -
Skin temperature maps as a measure of carotid artery stenosis
بواسطة: Saxena, Ashish, وآخرون
منشور في: (2021) -
Imaging modalities to diagnose carotid artery stenosis : progress and prospect
بواسطة: Saxena, Ashish, وآخرون
منشور في: (2019) -
Thrombin-antithrombin complex and d-dimer for detection of left atiral thrombus in the patients with mitralstenosis
بواسطة: Rewat Phankingthongkum
منشور في: (2006)