Microhardness and tensile strength analysis of SS316L/CuCrZr interface by laser powder bed fusion

Metallic joints within tokamak devices necessitate high interface hardness and superior bonding properties. However, conventional manufacturing techniques, specifically the hot isostatic pressing (HIP) diffusion joining process, encounter challenges, including the degradation of the SS316L/CuCrZr in...

Full description

Saved in:
Bibliographic Details
Main Authors: Jin, Xiang, Hoo, Zhiong Sheng, Jin, Chuanjie, Xiao, Zhongmin, Yao, Liming
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2024
Subjects:
Online Access:https://hdl.handle.net/10356/180598
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Metallic joints within tokamak devices necessitate high interface hardness and superior bonding properties. However, conventional manufacturing techniques, specifically the hot isostatic pressing (HIP) diffusion joining process, encounter challenges, including the degradation of the SS316L/CuCrZr interface and CuCrZr hardness. To address this, we explore the potential of laser powder bed fusion (LPBF) technology. To assess its viability, we fabricated 54 SS316L/CuCrZr samples and systematically investigated the impact of varied process parameters on the microhardness and tensile strength of the dissimilar metal interfaces. Through comprehensive analysis, integrating scanning electron microscopy (SEM) imagery, we elucidated the mechanisms underlying mechanical property alterations. Notably, within a laser volumetric energy density range of 60 J/mm3 to 90 J/mm3, we achieved elevated interface hardness (around 150 HV) and commendable bonding quality. Comparative analysis against traditional methods revealed a substantial enhancement of 30% to 40% in interface hardness with additive manufacturing, effectively mitigating CuCrZr hardness degradation.