Computably and punctually universal spaces
We prove that the standard computable presentation of the space C[0,1] of continuous real-valued functions on the unit interval is computably and punctually (primitively recursively) universal. From the perspective of modern computability theory, this settles a problem raised by Sierpiński in the 19...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/180629 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
總結: | We prove that the standard computable presentation of the space C[0,1] of continuous real-valued functions on the unit interval is computably and punctually (primitively recursively) universal. From the perspective of modern computability theory, this settles a problem raised by Sierpiński in the 1940s. We prove that the original Urysohn's construction of the universal separable Polish space U is punctually universal. We also show that effectively compact, punctual Stone spaces are punctually homeomorphically embeddable into Cantor space 2ω; note that we do not require effective compactness be primitive recursive. We also prove that effective compactness cannot be dropped from the premises by constructing a counterexample. |
---|