Ligand extension of aluminum fumarate metal-organic framework in transferring higher water for adsorption desalination

This article presents the synthesis and characterization of a new microporous metal organic framework (MOF) for adsorption desalination for the first time. The new MOF, designated as “Al-t,t-Ma”, is an analogue of aluminum fumarate (Al-Fum) and is fabricated via ligand extension method. Firstly, the...

Full description

Saved in:
Bibliographic Details
Main Authors: Han, Bo, Chakraborty, Anutosh
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2024
Subjects:
Online Access:https://hdl.handle.net/10356/180634
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:This article presents the synthesis and characterization of a new microporous metal organic framework (MOF) for adsorption desalination for the first time. The new MOF, designated as “Al-t,t-Ma”, is an analogue of aluminum fumarate (Al-Fum) and is fabricated via ligand extension method. Firstly, the MOF is synthesized, and then characterized by XRD, FTIR spectroscopy, TEM, SEM, TGA and N2 adsorption techniques. Secondly, the water adsorption experiments on the pristine Al-Fum and Al-t,t-Ma are performed for a wide temperature (30 °C ≤ T ≤ 80°C) and pressure (0 < P/Ps ≤ 0.9) ranges. The water adsorption isotherms, kinetics, hydro-thermal stabilities as well as the isosteric heat of adsorption (Qst) are evaluated. Thirdly, based on the experimentally confirmed isotherms, kinetics and isosteric heats data, the adsorption assisted desalination (AD) system is modelled and simulated. Finally, the performances of AD system employing Al-Fum and Al-t,t-Ma MOFs are calculated in terms of the performance ratio (PR) and specific daily water production (SDWP) under various half cycle times (100 s ≤ tcycle ≤ 1000 s) and regeneration temperatures (55°C ≤ Tregen ≤ 80°C). As compared with the pristine Al-Fum, the pore volume of Al-t,t-Ma MOF is found 115 % higher. The proposed Al-t,t-Ma MOF possesses higher water transfer (+57.5 % more) with promising hydro-thermal stability. Employing Al-t,t-Ma MOF as porous adsorbent, the SDWP is achieved 28 m3 per tonne of MOFs per day at the regeneration temperature of 55°C. These results confirm that Al-t,t-Ma MOF is a competent candidate for adsorption desalination.