Non-uniform distribution model of rust layer around steel bar circumference and its effect on corrosion-induced concrete cracking

This paper presents a critical review of non-uniform distribution models of rust layer around a reinforcing bar's circumference and a numerical investigation into the effect of non-uniform distribution of rust on (a) crack patterns and (b) development of concrete surface crack width. Different...

全面介紹

Saved in:
書目詳細資料
Main Authors: Bui, Huy Tang, Tan, Kang Hai
其他作者: School of Civil and Environmental Engineering
格式: Article
語言:English
出版: 2024
主題:
在線閱讀:https://hdl.handle.net/10356/180722
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:This paper presents a critical review of non-uniform distribution models of rust layer around a reinforcing bar's circumference and a numerical investigation into the effect of non-uniform distribution of rust on (a) crack patterns and (b) development of concrete surface crack width. Different shapes of rust layer simulated by mathematical models were established based on statistical distribution functions which were compared with the transport-electrochemical model and published testing results. In addition, an advanced 2D finite element model was implemented to simulate crack propagation in concrete caused by rebar corrosion. It is found that non-uniform rust distribution shape around the rebar not only affected concrete surface crack width evolution, but also crack length and crack pattern. Transport-electrochemical model and Gaussian distribution-based model could reasonably simulate rust distribution and associated corrosion-induced cracks. In addition, the authors proposed a simplified semi-empirical model that incorporated an analytical chloride transport model and a Gaussian model to simulate time-dependent advancement of non-uniform rust layer. Furthermore, a parametric study of the effect of elastic stiffness of the rust layer on crack patterns and surface crack width development was also performed.