Effective intrusion detection in heterogeneous Internet-of-Things networks via ensemble knowledge distillation-based federated learning
With the rapid development of low-cost consumer electronics and cloud computing, Internet-of- Things (IoT) devices are widely adopted for supporting next-generation distributed systems such as smart cities and industrial control systems. IoT devices are often susceptible to cyber attacks due to thei...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/180743 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-180743 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1807432024-10-23T01:55:36Z Effective intrusion detection in heterogeneous Internet-of-Things networks via ensemble knowledge distillation-based federated learning Shen, Jiyuan Yang, Wenzhuo Chu, Zhaowei Fan, Jiani Niyato, Dusit Lam, Kwok-Yan College of Computing and Data Science School of Computer Science and Engineering 2024 IEEE International Conference on Communications (ICC) Strategic Centre for Research in Privacy-Preserving Technologies & Systems (SCRIPTS) Computer and Information Science Intrusion detection system Federated learning With the rapid development of low-cost consumer electronics and cloud computing, Internet-of- Things (IoT) devices are widely adopted for supporting next-generation distributed systems such as smart cities and industrial control systems. IoT devices are often susceptible to cyber attacks due to their open deployment environment and limited computing capabilities for stringent security controls. Hence, Intrusion Detection Systems (IDS) have emerged as one of the effective ways of securing IoT networks by monitoring and detecting abnormal activities. However, existing IDS approaches rely on centralized servers to generate behaviour profiles and detect anomalies, causing high response time and large operational costs due to communication overhead. Besides, sharing of behaviour data in an open and distributed IoT network environment may violate on-device privacy requirements. Additionally, various IoT devices tend to capture heterogeneous data, which complicates the training of behaviour models. In this paper, we introduce Federated Learning (FL) to collaboratively train a decentralized shared model of IDS, without exposing training data to others. Furthermore, we propose an effective method called Federated Learning Ensemble Knowledge Distillation (FLEKD) to mitigate the heterogeneity problems across various clients. FLEKD enables a more flexible aggregation method than conventional model fusion techniques. Experiment results on the public dataset CICIDS2019 demonstrate that the proposed approach outperforms local training and traditional FL in terms of both speed and performance and significantly improves the system's ability to detect unknown attacks. Finally, we evaluate our proposed framework's performance in three potential real-world scenarios and show FLEKD has a clear advantage in experimental results. Info-communications Media Development Authority (IMDA) National Research Foundation (NRF) Submitted/Accepted version This research is supported by the National Research Foundation, Singapore and Infocomm Media Development Authority under its Trust Tech Funding Initiative and Strategic Capability Research Centres Funding Initiative. 2024-10-23T01:55:36Z 2024-10-23T01:55:36Z 2024 Conference Paper Shen, J., Yang, W., Chu, Z., Fan, J., Niyato, D. & Lam, K. (2024). Effective intrusion detection in heterogeneous Internet-of-Things networks via ensemble knowledge distillation-based federated learning. 2024 IEEE International Conference on Communications (ICC), 2034-2039. https://dx.doi.org/10.1109/ICC51166.2024.10622262 9781728190549 https://hdl.handle.net/10356/180743 10.1109/ICC51166.2024.10622262 2-s2.0-85202834823 2034 2039 en © 2024 IEEE. All rights reserved. This article may be downloaded for personal use only. Any other use requires prior permission of the copyright holder. The Version of Record is available online at http://doi.org/10.1109/ICC51166.2024.10622262. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Computer and Information Science Intrusion detection system Federated learning |
spellingShingle |
Computer and Information Science Intrusion detection system Federated learning Shen, Jiyuan Yang, Wenzhuo Chu, Zhaowei Fan, Jiani Niyato, Dusit Lam, Kwok-Yan Effective intrusion detection in heterogeneous Internet-of-Things networks via ensemble knowledge distillation-based federated learning |
description |
With the rapid development of low-cost consumer electronics and cloud computing, Internet-of- Things (IoT) devices are widely adopted for supporting next-generation distributed systems such as smart cities and industrial control systems. IoT devices are often susceptible to cyber attacks due to their open deployment environment and limited computing capabilities for stringent security controls. Hence, Intrusion Detection Systems (IDS) have emerged as one of the effective ways of securing IoT networks by monitoring and detecting abnormal activities. However, existing IDS approaches rely on centralized servers to generate behaviour profiles and detect anomalies, causing high response time and large operational costs due to communication overhead. Besides, sharing of behaviour data in an open and distributed IoT network environment may violate on-device privacy requirements. Additionally, various IoT devices tend to capture heterogeneous data, which complicates the training of behaviour models. In this paper, we introduce Federated Learning (FL) to collaboratively train a decentralized shared model of IDS, without exposing training data to others. Furthermore, we propose an effective method called Federated Learning Ensemble Knowledge Distillation (FLEKD) to mitigate the heterogeneity problems across various clients. FLEKD enables a more flexible aggregation method than conventional model fusion techniques. Experiment results on the public dataset CICIDS2019 demonstrate that the proposed approach outperforms local training and traditional FL in terms of both speed and performance and significantly improves the system's ability to detect unknown attacks. Finally, we evaluate our proposed framework's performance in three potential real-world scenarios and show FLEKD has a clear advantage in experimental results. |
author2 |
College of Computing and Data Science |
author_facet |
College of Computing and Data Science Shen, Jiyuan Yang, Wenzhuo Chu, Zhaowei Fan, Jiani Niyato, Dusit Lam, Kwok-Yan |
format |
Conference or Workshop Item |
author |
Shen, Jiyuan Yang, Wenzhuo Chu, Zhaowei Fan, Jiani Niyato, Dusit Lam, Kwok-Yan |
author_sort |
Shen, Jiyuan |
title |
Effective intrusion detection in heterogeneous Internet-of-Things networks via ensemble knowledge distillation-based federated learning |
title_short |
Effective intrusion detection in heterogeneous Internet-of-Things networks via ensemble knowledge distillation-based federated learning |
title_full |
Effective intrusion detection in heterogeneous Internet-of-Things networks via ensemble knowledge distillation-based federated learning |
title_fullStr |
Effective intrusion detection in heterogeneous Internet-of-Things networks via ensemble knowledge distillation-based federated learning |
title_full_unstemmed |
Effective intrusion detection in heterogeneous Internet-of-Things networks via ensemble knowledge distillation-based federated learning |
title_sort |
effective intrusion detection in heterogeneous internet-of-things networks via ensemble knowledge distillation-based federated learning |
publishDate |
2024 |
url |
https://hdl.handle.net/10356/180743 |
_version_ |
1814777724102770688 |