Investigation of non-uniform carbonation in strain-hardening magnesia composite (SHMC) and its impacts on fiber-matrix interface and fiber-bridging properties
Unlike Portland cement, the reactive magnesia cement (RMC) develops its strength via carbonation. Non-uniform microstructure and properties due to the varied carbonation degree across cross-section depth have thus been observed. However, the existing micromechanics design theory employs uniform mate...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/180797 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Unlike Portland cement, the reactive magnesia cement (RMC) develops its strength via carbonation. Non-uniform microstructure and properties due to the varied carbonation degree across cross-section depth have thus been observed. However, the existing micromechanics design theory employs uniform material properties (cementitious matrix and fiber-matrix interface characteristics) to design strain-hardening composites. This research investigated such non-uniform carbonation in a strain-hardening magnesia composite (SHMC) and its impacts on fiber-matrix interface and fiber-bridging properties. Results showed that mineral phase composition (of the cementitious matrix) and fiber-matrix interface properties across cross-section depth are highly non-uniform in SHMC due to varied carbonation degrees. The outer layer exhibited a much higher carbonation degree with significantly stronger fiber-matrix friction, while the inner core showed negligible carbonation with distinct fiber-matrix properties. Insights gained from the micro-scale investigation were used to calculate the fiber-bridging constitutive law of SHMC with non-uniform carbonation across cross-section depth and to assess its strain-hardening performance. This investigation highlights the importance and necessity of considering non-uniform carbonation in the modeling and design of SHMC. The study presents a framework for the consideration of non-uniform micromechanical parameters in the design of strain-hardening cementitious composites. |
---|