Graph neural network-based lithium-ion battery state of health estimation using partial discharging curve
Data-driven methods have gained extensive attention in estimating the state of health (SOH) of lithium-ion batteries. Accurate SOH estimation requires degradation-relevant features and alignment of statistical distributions between training and testing datasets. However, current research often o...
محفوظ في:
المؤلفون الرئيسيون: | Zhou, Kate Qi, Qin, Yan, Yuen, Chau |
---|---|
مؤلفون آخرون: | School of Electrical and Electronic Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/180800 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
مواد مشابهة
-
Poisson kernel: avoiding self-smoothing in graph convolutional networks
بواسطة: Yang, Ziqing, وآخرون
منشور في: (2022) -
Graph Adversarial Training: Dynamically Regularizing Based on Graph Structure
بواسطة: FENG FULI, وآخرون
منشور في: (2020) -
A multisensory interaction framework for human-cyber–physical system based on graph convolutional networks
بواسطة: Qi, Wenqian, وآخرون
منشور في: (2024) -
Site selection via learning graph convolutional neural networks: a case study of Singapore
بواسطة: Lan, Tian, وآخرون
منشور في: (2023) -
When convolutional network meets temporal heterogeneous graphs: an effective community detection method
بواسطة: Zheng, Yaping, وآخرون
منشور في: (2023)