Curvature-enhanced graph convolutional network for biomolecular interaction prediction

Geometric deep learning has demonstrated a great potential in non-Euclidean data analysis. The incorporation of geometric insights into learning architecture is vital to its success. Here we propose a curvature-enhanced graph convolutional network (CGCN) for biomolecular interaction prediction. Our...

全面介紹

Saved in:
書目詳細資料
Main Authors: Shen, Cong, Ding, Pingjian, Wee, Junjie, Bi, Jialin, Luo, Jiawei, Xia, Kelin
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2024
主題:
在線閱讀:https://hdl.handle.net/10356/174927
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English