Curvature-enhanced graph convolutional network for biomolecular interaction prediction
Geometric deep learning has demonstrated a great potential in non-Euclidean data analysis. The incorporation of geometric insights into learning architecture is vital to its success. Here we propose a curvature-enhanced graph convolutional network (CGCN) for biomolecular interaction prediction. Our...
Saved in:
Main Authors: | Shen, Cong, Ding, Pingjian, Wee, Junjie, Bi, Jialin, Luo, Jiawei, Xia, Kelin |
---|---|
其他作者: | School of Physical and Mathematical Sciences |
格式: | Article |
語言: | English |
出版: |
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/174927 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Forman persistent Ricci curvature (FPRC)-based machine learning models for protein-ligand binding affinity prediction
由: Wee, Junjie, et al.
出版: (2023) -
On the ricci curvature of a compact hypersurface in Euclidean space
由: Leung, P.-F.
出版: (2014) -
Poisson kernel: avoiding self-smoothing in graph convolutional networks
由: Yang, Ziqing, et al.
出版: (2022) -
The Total Mean Curvature of a Complete Noncompact Surface of Nonnegative Curvature in ℝ3
由: Cheung, L.-F., et al.
出版: (2014) -
When convolutional network meets temporal heterogeneous graphs: an effective community detection method
由: Zheng, Yaping, et al.
出版: (2023)