Leveraging temporal dependency for cross-subject-MI BCIs by contrastive learning and self-attention
Brain-computer interfaces (BCIs) built based on motor imagery paradigm have found extensive utilization in motor rehabilitation and the control of assistive applications. However, traditional MI-BCI systems often exhibit suboptimal classification performance and require significant time for new user...
Saved in:
Main Authors: | , , , , , , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/180824 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
總結: | Brain-computer interfaces (BCIs) built based on motor imagery paradigm have found extensive utilization in motor rehabilitation and the control of assistive applications. However, traditional MI-BCI systems often exhibit suboptimal classification performance and require significant time for new users to collect subject-specific training data. This limitation diminishes the user-friendliness of BCIs and presents significant challenges in developing effective subject-independent models. In response to these challenges, we propose a novel subject-independent framework for learning temporal dependency for motor imagery BCIs by Contrastive Learning and Self-attention (CLS). In CLS model, we incorporate self-attention mechanism and supervised contrastive learning into a deep neural network to extract important information from electroencephalography (EEG) signals as features. We evaluate the CLS model using two large public datasets encompassing numerous subjects in a subject-independent experiment condition. The results demonstrate that CLS outperforms six baseline algorithms, achieving a mean classification accuracy improvement of 1.3 % and 4.71 % than the best algorithm on the Giga dataset and OpenBMI dataset, respectively. Our findings demonstrate that CLS can effectively learn invariant discriminative features from training data obtained from non-target subjects, thus showcasing its potential for building models for new users without the need for calibration. |
---|