Assessment of emerging and persistent contaminants in an anthropogenic-impacted watershed: application using targeted, non-targeted, and in vitro bioassay techniques

Emerging and persistent contaminants (EPC) pose a significant challenge to water quality monitoring efforts. Effect-based monitoring (EBM) techniques provide an efficient and systematic approach in water quality monitoring, but they tend to be resource intensive. In this study, we investigated the E...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Lee, Theodora Hui Yian, Li, Caixia, Dos Santos, Mauricius Marques, Tan, Suan Yong, Sureshkumar, Mithusha, Srinuansom, Khajornkiat, Ziegler, Alan D., Snyder, Shane Allen
مؤلفون آخرون: Nanyang Environment and Water Research Institute
التنسيق: مقال
اللغة:English
منشور في: 2024
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/180848
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Emerging and persistent contaminants (EPC) pose a significant challenge to water quality monitoring efforts. Effect-based monitoring (EBM) techniques provide an efficient and systematic approach in water quality monitoring, but they tend to be resource intensive. In this study, we investigated the EPC distribution for various land uses using target analysis (TA) and non-target screening (NTS) and in vitro bioassays, both individually and integrated, in the upper Ping River Catchment, northern Thailand. Our findings of NTS showed that urban areas were the most contaminated of all land use types, although agriculture sites had high unexpected pollution levels. We evaluated the reliability of NTS data by comparing it to TA and observed varying inconsistencies likely due to matrix interferences and isobaric compound interferences. Integrating NTS with in vitro bioassays for a thorough analysis posed challenges, primary due to a scarcity of concentration data for key compounds, and potentially additive or non-additive effects of mixture samples that could not be accounted for. While EBM approaches place emphasis on toxic sites, this study demonstrated the importance of considering non-bioactive sites that contain toxic compounds with antagonistic effects that may go undetected by traditional monitoring approaches. The present work emphasizes the importance of improving NTS workflows and ensuring high-quality EBM analyses in future water quality monitoring programs.