One-pot synthesis of biobased acrylic microcapsules for controlled release of fragrance in consumers products
Microcapsules were synthesized using fully biobased monomers (itaconic acid (IA) and its derivatives) and partially biobased monomers (tetrahydrofurfuryl methacrylate and glycerol dimethacrylate) via one-pot interfacial radical polymerization for encapsulating fragrance oil. The loading capacity (th...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/180906 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-180906 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1809062024-11-04T05:06:07Z One-pot synthesis of biobased acrylic microcapsules for controlled release of fragrance in consumers products Ng, Mandy El Habnouni, Sarah Goto, Atsushi School of Chemistry, Chemical Engineering and Biotechnology Engineering Biobased microcapsule Encapsulation Microcapsules were synthesized using fully biobased monomers (itaconic acid (IA) and its derivatives) and partially biobased monomers (tetrahydrofurfuryl methacrylate and glycerol dimethacrylate) via one-pot interfacial radical polymerization for encapsulating fragrance oil. The loading capacity (the fraction of the fragrance oil in the entire mixture (slurry)) was as high as approximately 31 wt %, which is practically attractive. The three monomers were effectively polymerized at the oil-water interface to form a dense shell in the microcapsule, and hence, nearly all (100%) of the encapsulated fragrance oil was stably present in the microcapsule and did not diffuse out of the microcapsule even at an elevated temperature at 120 °C. The effects of the hydrophilicity of IA and its derivatives and the stirring speed during the polymerization were comprehensively studied. Hydrophilic itaconates tended to efficiently generate dense shells compared to hydrophobic itaconates, and there was an optimal stirring speed (900 rpm in this particular study). The polymerization behavior was also monitored in detail over the polymerization time. The obtained microcapsules were synthesized from biobased monomers and offer sustainable approaches for fragrance oil encapsulation. The obtained microcapsules were able to be deposited onto fabrics and also to rupture by mechanical force, demonstrating potential for laundry applications and fragrance release from the microcapsule by friction. Economic Development Board (EDB) M.N. was supported by Economic Development Board (EDB) Industrial Postgraduate Programme (IPP) in Singapore (S21-10895-IPP-II-SI). 2024-11-04T05:06:07Z 2024-11-04T05:06:07Z 2024 Journal Article Ng, M., El Habnouni, S. & Goto, A. (2024). One-pot synthesis of biobased acrylic microcapsules for controlled release of fragrance in consumers products. ACS Applied Polymer Materials, 6(15), 9323-9334. https://dx.doi.org/10.1021/acsapm.4c01754 2637-6105 https://hdl.handle.net/10356/180906 10.1021/acsapm.4c01754 2-s2.0-85200361301 15 6 9323 9334 en S21-10895-IPP-II-SI ACS Applied Polymer Materials © 2024 American Chemical Society. All rights reserve. |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering Biobased microcapsule Encapsulation |
spellingShingle |
Engineering Biobased microcapsule Encapsulation Ng, Mandy El Habnouni, Sarah Goto, Atsushi One-pot synthesis of biobased acrylic microcapsules for controlled release of fragrance in consumers products |
description |
Microcapsules were synthesized using fully biobased monomers (itaconic acid (IA) and its derivatives) and partially biobased monomers (tetrahydrofurfuryl methacrylate and glycerol dimethacrylate) via one-pot interfacial radical polymerization for encapsulating fragrance oil. The loading capacity (the fraction of the fragrance oil in the entire mixture (slurry)) was as high as approximately 31 wt %, which is practically attractive. The three monomers were effectively polymerized at the oil-water interface to form a dense shell in the microcapsule, and hence, nearly all (100%) of the encapsulated fragrance oil was stably present in the microcapsule and did not diffuse out of the microcapsule even at an elevated temperature at 120 °C. The effects of the hydrophilicity of IA and its derivatives and the stirring speed during the polymerization were comprehensively studied. Hydrophilic itaconates tended to efficiently generate dense shells compared to hydrophobic itaconates, and there was an optimal stirring speed (900 rpm in this particular study). The polymerization behavior was also monitored in detail over the polymerization time. The obtained microcapsules were synthesized from biobased monomers and offer sustainable approaches for fragrance oil encapsulation. The obtained microcapsules were able to be deposited onto fabrics and also to rupture by mechanical force, demonstrating potential for laundry applications and fragrance release from the microcapsule by friction. |
author2 |
School of Chemistry, Chemical Engineering and Biotechnology |
author_facet |
School of Chemistry, Chemical Engineering and Biotechnology Ng, Mandy El Habnouni, Sarah Goto, Atsushi |
format |
Article |
author |
Ng, Mandy El Habnouni, Sarah Goto, Atsushi |
author_sort |
Ng, Mandy |
title |
One-pot synthesis of biobased acrylic microcapsules for controlled release of fragrance in consumers products |
title_short |
One-pot synthesis of biobased acrylic microcapsules for controlled release of fragrance in consumers products |
title_full |
One-pot synthesis of biobased acrylic microcapsules for controlled release of fragrance in consumers products |
title_fullStr |
One-pot synthesis of biobased acrylic microcapsules for controlled release of fragrance in consumers products |
title_full_unstemmed |
One-pot synthesis of biobased acrylic microcapsules for controlled release of fragrance in consumers products |
title_sort |
one-pot synthesis of biobased acrylic microcapsules for controlled release of fragrance in consumers products |
publishDate |
2024 |
url |
https://hdl.handle.net/10356/180906 |
_version_ |
1816859007857459200 |