Tailoring surface electronic structure of spinel Co3O4 oxide via Fe and Cu substitution for enhanced oxygen evolution reaction

Multimetal spinel oxides are promising candidates for the oxygen evolution reaction (OER) due to their ability to offer more accessible active sites and oxygen vacancies (Ovac). However, the utilization of redox-active species in spinel oxides is limited. Herein, we unveil an efficient multimetal sp...

全面介紹

Saved in:
書目詳細資料
Main Authors: Ahmed, Mahmoud Gamal, Tay, Ying Fan, Zhang, Mengyuan, Chiam, Sing Yang, Wong, Lydia Helena
其他作者: School of Materials Science and Engineering
格式: Article
語言:English
出版: 2024
主題:
在線閱讀:https://hdl.handle.net/10356/181038
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Multimetal spinel oxides are promising candidates for the oxygen evolution reaction (OER) due to their ability to offer more accessible active sites and oxygen vacancies (Ovac). However, the utilization of redox-active species in spinel oxides is limited. Herein, we unveil an efficient multimetal spinel oxide using high-throughput methods. The oxide contains Fe and Cu substituted into Co sites following a stoichiometry of Fe0.6Cu0.6Co1.8O4. The dual cation substitution of Fe and Cu manipulates the electronic states and generates Ovac, thereby generating more accessible active species. This significantly improves the OH- adsorption capacity on spinel oxide triggering a more favorable OER reaction with a low overpotential of 265 mV at 10 mA cm-2 and high durability in an alkaline medium. Our work not only presents the utilization of a high-throughput approach to explore efficient catalysts with optimal composition but also provides useful insights into the modulation of electronic states for enhanced catalytic performance.