Near-orthogonal overlay communications in LoS channel enabled by novel OAM beams without central energy voids: an experimental study

This paper introduces a novel Line-of-Sight (LoS) Multiple-Input Multiple-Output (MIMO) communication architecture leveraging non-traditional Orbital Angular Momentum (OAM) beams. Challenging the conventional paradigm of hollow-emitting OAM beams, this study presents an innovative OAM generator that...

全面介紹

Saved in:
書目詳細資料
Main Authors: Zhao, Yufei, Ma, Xiaoyan, Guan, Yong Liang, Liu, Yile, Afkar Mohamed Ismail, Liu, Xiaobei, Yeo, Siew Yam, Yuen, Chau
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2024
主題:
在線閱讀:https://hdl.handle.net/10356/181041
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:This paper introduces a novel Line-of-Sight (LoS) Multiple-Input Multiple-Output (MIMO) communication architecture leveraging non-traditional Orbital Angular Momentum (OAM) beams. Challenging the conventional paradigm of hollow-emitting OAM beams, this study presents an innovative OAM generator that produces directional OAM beams without central energy voids, aligning their radiation patterns with those of conventional planar wave horn antennas. Within the main lobe of radiation patterns, the phase variation characteristics inherent to OAM beams are ingeniously maintained, linking different OAM modes to the linear wavefront variation gradients, thereby reducing channel correlation in LoS scenarios and significantly augmenting the channel capacity of LoS-MIMO frameworks. Empirical validations conducted through a meticulously designed LoS-MIMO experimental platform reveal significant improvements in channel correlation coefficients, communication stability, and Bit Error Rate (BER) compared to systems utilizing traditional planar wave antennas. The experiment results underscore the potential of the novel OAM-based system to improve current LoS-MIMO communication protocols, and offer both academic and engineering guidance for the construction of practical communication infrastructures. Beyond its immediate contributions, this paper underscores a pivotal shift in the field of communications, pointing out that traditional communication algorithms have primarily focused on baseband signal processing while often overlooking the electromagnetic characteristics of the physical world. This research highlights that, in addition to radiation patterns, the wavefront phase variations of traditional antennas represent a new degree-of-freedom that can be exploited. Consequently, future communication algorithms designed around reconfigurable electromagnetic wavefront properties hold the promise of ushering wireless communications into a new era.