Blind video quality prediction by uncovering human video perceptual representation

Blind video quality assessment (VQA) has become an increasingly demanding problem in automatically assessing the quality of ever-growing in-the-wild videos. Although efforts have been made to measure temporal distortions, the core to distinguish between VQA and image quality assessment (IQA), the la...

Full description

Saved in:
Bibliographic Details
Main Authors: Liao, Liang, Xu, Kangmin, Wu, Haoning, Chen, Chaofeng, Sun, Wenxiu, Yan, Qiong, Kuo, Jay C.-C., Lin, Weisi
Other Authors: School of Computer Science and Engineering
Format: Article
Language:English
Published: 2024
Subjects:
Online Access:https://hdl.handle.net/10356/181046
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Blind video quality assessment (VQA) has become an increasingly demanding problem in automatically assessing the quality of ever-growing in-the-wild videos. Although efforts have been made to measure temporal distortions, the core to distinguish between VQA and image quality assessment (IQA), the lack of modeling of how the human visual system (HVS) relates to the temporal quality of videos hinders the precise mapping of predicted temporal scores to the human perception. Inspired by the recent discovery of the temporal straightness law of natural videos in the HVS, this paper intends to model the complex temporal distortions of in-the-wild videos in a simple and uniform representation by describing the geometric properties of videos in the visual perceptual domain. A novel videolet, with perceptual representation embedding of a few consecutive frames, is designed as the basic quality measurement unit to quantify temporal distortions by measuring the angular and linear displacements from the straightness law. By combining the predicted score on each videolet, a perceptually temporal quality evaluator (PTQE) is formed to measure the temporal quality of the entire video. Experimental results demonstrate that the perceptual representation in the HVS is an efficient way of predicting subjective temporal quality. Moreover, when combined with spatial quality metrics, PTQE achieves top performance over popular in-the-wild video datasets. More importantly, PTQE requires no additional information beyond the video being assessed, making it applicable to any dataset without parameter tuning. Additionally, the generalizability of PTQE is evaluated on video frame interpolation tasks, demonstrating its potential to benefit temporal-related enhancement tasks.