Joint client-and-sample selection for federated learning via bi-level optimization
Federated Learning (FL) enables massive local data owners to collaboratively train a deep learning model without disclosing their private data. The importance of local data samples from various data owners to FL models varies widely. This is exacerbated by the presence of noisy data that exhibit lar...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/181061 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Federated Learning (FL) enables massive local data owners to collaboratively train a deep learning model without disclosing their private data. The importance of local data samples from various data owners to FL models varies widely. This is exacerbated by the presence of noisy data that exhibit large losses similar to important (hard) samples. Currently, there lacks an FL approach that can effectively distinguish hard samples (which are beneficial) from noisy samples (which are harmful). To bridge this gap, we propose the joint Federated Meta-Weighting based Client and Sample Selection (FedMW-CSS) approach to simultaneously mitigate label noise and hard sample selection. It is a bilevel optimization approach for FL client-and-sample selection and global model construction to achieve hard sample-aware noise-robust learning in a privacy preserving manner. It performs meta-learning based online approximation to iteratively update global FL models, select the most positively influential samples and deal with training data noise. To utilize both the instance-level information and class-level information for better performance improvements, FedMW-CSS efficiently learns a class-level weight by manipulating gradients at the class level, e.g., it performs a gradient descent step on class-level weights, which only relies on intermediate gradients. Theoretically, we analyze the privacy guarantees and convergence of FedMW-CSS. Extensive experiments comparison against eight state-of-the-art baselines on six real-world datasets in the presence of data noise and heterogeneity shows that FedMW-CSS achieves up to 28.5% higher test accuracy, while saving communication and computation costs by at least 49.3% and 1.2%, respectively. |
---|