Interpretable recommendation based on graph neural networks

This project focuses on enhancing the explainability of Graph Neural Network (GNN)-based recommender systems by integrating Large Language Models (LLMs) and Explainable User Interface (XUI) design principles to deliver user-friendly, interpretable recommendations. Through the development of a LightG...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Tan, Samantha Shu Hua
مؤلفون آخرون: Luo Siqiang
التنسيق: Final Year Project
اللغة:English
منشور في: Nanyang Technological University 2024
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/181192
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:This project focuses on enhancing the explainability of Graph Neural Network (GNN)-based recommender systems by integrating Large Language Models (LLMs) and Explainable User Interface (XUI) design principles to deliver user-friendly, interpretable recommendations. Through the development of a LightGCN model paired with an three different LLMs, namely OpenAI’s GPT 4o-mini, Meta’s Llama 2.5 and Gemini 1.5, the system translates complex model predictions into natural language explanations, improving accessibility for novice users. By bridging technical GNN outputs with a user-centred design, this research addresses critical gaps in transparency and usability in XAI, demonstrating a practical approach for deploying interpretable, AI-driven recommendations in real-world applications.