Quantifying combinatorial capababilities of image-generating AI
This study investigates the combinatorial capabilities of state-of-the-art generative AI models—Midjourney, DALL-E, and Stable Diffusion—when tasked with generating images containing underrepresented object combinations. Utilizing the LAION400M dataset as a proxy for the models' training data...
Saved in:
主要作者: | Poon, Wei Kang |
---|---|
其他作者: | Li Boyang |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/181225 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Quantifying combanitorial capabilities of image-generating AI
由: Karanam, Akshit
出版: (2024) -
Development of perceptual image quality database and assessment for AI generated facial images
由: Tan, Xin Kai
出版: (2024) -
Generative AI-based ChatGPT and AI chatbots for learning AI education
由: Chin, Woon Ping
出版: (2024) -
Can we trust generative AI?
由: Mu, Zhan
出版: (2025) -
Bias in the age of generative AI: a deep dive into autoregressive model fairness
由: Ng, Darren Joon Kai
出版: (2024)