Machine learning-enabled forward prediction and inverse design of 4D-printed active plates

Shape transformations of active composites (ACs) depend on the spatial distribution of constituent materials. Voxel-level complex material distributions can be encoded by 3D printing, offering enormous freedom for possible shape-change 4D-printed ACs. However, efficiently designing the material dist...

Full description

Saved in:
Bibliographic Details
Main Authors: Sun, Xiaohao, Yue, Liang, Yu, Luxia, Forte, Connor T., Armstrong, Connor D., Zhou, Kun, Demoly, Frédéric, Zhao, Renee Ruike, Qi, Jerry Hang
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2024
Subjects:
Online Access:https://hdl.handle.net/10356/181246
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Shape transformations of active composites (ACs) depend on the spatial distribution of constituent materials. Voxel-level complex material distributions can be encoded by 3D printing, offering enormous freedom for possible shape-change 4D-printed ACs. However, efficiently designing the material distribution to achieve desired 3D shape changes is significantly challenging yet greatly needed. Here, we present an approach that combines machine learning (ML) with both gradient-descent (GD) and evolutionary algorithm (EA) to design AC plates with 3D shape changes. A residual network ML model is developed for the forward shape prediction. A global-subdomain design strategy with ML-GD and ML-EA is then used for the inverse material-distribution design. For a variety of numerically generated target shapes, both ML-GD and ML-EA demonstrate high efficiency. By further combining ML-EA with a normal distance-based loss function, optimized designs are achieved for multiple irregular target shapes. Our approach thus provides a highly efficient tool for the design of 4D-printed active composites.