Neurostructural subgroup in 4291 individuals with schizophrenia identified using the subtype and stage inference algorithm
Machine learning can be used to define subtypes of psychiatric conditions based on shared biological foundations of mental disorders. Here we analyzed cross-sectional brain images from 4,222 individuals with schizophrenia and 7038 healthy subjects pooled across 41 international cohorts from the ENIG...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/181258 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-181258 |
---|---|
record_format |
dspace |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Medicine, Health and Life Sciences Nuclear magnetic resonance imaging Schizophrenia |
spellingShingle |
Medicine, Health and Life Sciences Nuclear magnetic resonance imaging Schizophrenia Jiang, Yuchao Luo, Cheng Wang, Jijun Palaniyappan, Lena Chang, Xiao Xiang, Shitong Zhang, Jie Duan, Mingjun Huang, Huan Gaser, Christian Nemoto, Kiyotaka Miura, Kenichiro Hashimoto, Ryota Westlye, Lars T. Richard, Genevieve Fernandez-Cabello, Sara Parker, Nadine Andreassen, Ole A. Kircher, Tilo Nenadić, Igor Stein, Frederike Thomas-Odenthal, Florian Teutenberg, Lea Usemann, Paula Dannlowski, Udo Hahn, Tim Grotegerd, Dominik Meinert, Susanne Lencer, Rebekka Tang, Yingying Zhang, Tianhong Li, Chunbo Yue, Weihua Zhang, Yuyanan Yu, Xin Zhou, Enpeng Lin, Ching-Po Tsai, Shih-Jen Rodrigue, Amanda L. Glahn, David Pearlson, Godfrey Blangero, John Karuk, Andriana Pomarol-Clotet, Edith Salvador, Raymond Fuentes-Claramonte, Paola Garcia-León, María Ángeles Spalletta, Gianfranco Piras, Fabrizio Vecchio, Daniela Banaj, Nerisa Cheng, Jingliang Liu, Zhening Yang, Jie Gonul, Ali Saffet Uslu, Ozgul Burhanoglu, Birce Begum Demir, Aslihan Uyar Rootes-Murdy, Kelly Calhoun, Vince D. Sim, Kang Green, Melissa Quidé, Yann Chung, Young Chul Kim, Woo-Sung Sponheim, Scott R. Demro, Caroline Ramsay, Ian S. Iasevoli, Felice de Bartolomeis, Andrea Barone, Annarita Ciccarelli, Mariateresa Brunetti, Arturo Cocozza, Sirio Pontillo, Giuseppe Tranfa, Mario Park, Min Tae M. Kirschner, Matthias Georgiadis, Foivos Kaiser, Stefan Van Rheenen, Tamsyn E. Rossell, Susan L. Hughes, Matthew Woods, William Carruthers, Sean P. Sumner, Philip Ringin, Elysha Spaniel, Filip Skoch, Antonin Tomecek, David Homan, Philipp Homan, Stephanie Omlor, Wolfgang Cecere, Giacomo Nguyen, Dana D. Preda, Adrian Thomopoulos, Sophia I. Jahanshad, Neda Cui, Long-Biao Yao, Dezhong Thompson, Paul M. Turner, Jessica A. van Erp, Theo G. M. Cheng, Wei Feng, Jianfeng Neurostructural subgroup in 4291 individuals with schizophrenia identified using the subtype and stage inference algorithm |
description |
Machine learning can be used to define subtypes of psychiatric conditions based on shared biological foundations of mental disorders. Here we analyzed cross-sectional brain images from 4,222 individuals with schizophrenia and 7038 healthy subjects pooled across 41 international cohorts from the ENIGMA, non-ENIGMA cohorts and public datasets. Using the Subtype and Stage Inference (SuStaIn) algorithm, we identify two distinct neurostructural subgroups by mapping the spatial and temporal 'trajectory' of gray matter change in schizophrenia. Subgroup 1 was characterized by an early cortical-predominant loss with enlarged striatum, whereas subgroup 2 displayed an early subcortical-predominant loss in the hippocampus, striatum and other subcortical regions. We confirmed the reproducibility of the two neurostructural subtypes across various sample sites, including Europe, North America and East Asia. This imaging-based taxonomy holds the potential to identify individuals with shared neurobiological attributes, thereby suggesting the viability of redefining existing disorder constructs based on biological factors. |
author2 |
Lee Kong Chian School of Medicine (LKCMedicine) |
author_facet |
Lee Kong Chian School of Medicine (LKCMedicine) Jiang, Yuchao Luo, Cheng Wang, Jijun Palaniyappan, Lena Chang, Xiao Xiang, Shitong Zhang, Jie Duan, Mingjun Huang, Huan Gaser, Christian Nemoto, Kiyotaka Miura, Kenichiro Hashimoto, Ryota Westlye, Lars T. Richard, Genevieve Fernandez-Cabello, Sara Parker, Nadine Andreassen, Ole A. Kircher, Tilo Nenadić, Igor Stein, Frederike Thomas-Odenthal, Florian Teutenberg, Lea Usemann, Paula Dannlowski, Udo Hahn, Tim Grotegerd, Dominik Meinert, Susanne Lencer, Rebekka Tang, Yingying Zhang, Tianhong Li, Chunbo Yue, Weihua Zhang, Yuyanan Yu, Xin Zhou, Enpeng Lin, Ching-Po Tsai, Shih-Jen Rodrigue, Amanda L. Glahn, David Pearlson, Godfrey Blangero, John Karuk, Andriana Pomarol-Clotet, Edith Salvador, Raymond Fuentes-Claramonte, Paola Garcia-León, María Ángeles Spalletta, Gianfranco Piras, Fabrizio Vecchio, Daniela Banaj, Nerisa Cheng, Jingliang Liu, Zhening Yang, Jie Gonul, Ali Saffet Uslu, Ozgul Burhanoglu, Birce Begum Demir, Aslihan Uyar Rootes-Murdy, Kelly Calhoun, Vince D. Sim, Kang Green, Melissa Quidé, Yann Chung, Young Chul Kim, Woo-Sung Sponheim, Scott R. Demro, Caroline Ramsay, Ian S. Iasevoli, Felice de Bartolomeis, Andrea Barone, Annarita Ciccarelli, Mariateresa Brunetti, Arturo Cocozza, Sirio Pontillo, Giuseppe Tranfa, Mario Park, Min Tae M. Kirschner, Matthias Georgiadis, Foivos Kaiser, Stefan Van Rheenen, Tamsyn E. Rossell, Susan L. Hughes, Matthew Woods, William Carruthers, Sean P. Sumner, Philip Ringin, Elysha Spaniel, Filip Skoch, Antonin Tomecek, David Homan, Philipp Homan, Stephanie Omlor, Wolfgang Cecere, Giacomo Nguyen, Dana D. Preda, Adrian Thomopoulos, Sophia I. Jahanshad, Neda Cui, Long-Biao Yao, Dezhong Thompson, Paul M. Turner, Jessica A. van Erp, Theo G. M. Cheng, Wei Feng, Jianfeng |
format |
Article |
author |
Jiang, Yuchao Luo, Cheng Wang, Jijun Palaniyappan, Lena Chang, Xiao Xiang, Shitong Zhang, Jie Duan, Mingjun Huang, Huan Gaser, Christian Nemoto, Kiyotaka Miura, Kenichiro Hashimoto, Ryota Westlye, Lars T. Richard, Genevieve Fernandez-Cabello, Sara Parker, Nadine Andreassen, Ole A. Kircher, Tilo Nenadić, Igor Stein, Frederike Thomas-Odenthal, Florian Teutenberg, Lea Usemann, Paula Dannlowski, Udo Hahn, Tim Grotegerd, Dominik Meinert, Susanne Lencer, Rebekka Tang, Yingying Zhang, Tianhong Li, Chunbo Yue, Weihua Zhang, Yuyanan Yu, Xin Zhou, Enpeng Lin, Ching-Po Tsai, Shih-Jen Rodrigue, Amanda L. Glahn, David Pearlson, Godfrey Blangero, John Karuk, Andriana Pomarol-Clotet, Edith Salvador, Raymond Fuentes-Claramonte, Paola Garcia-León, María Ángeles Spalletta, Gianfranco Piras, Fabrizio Vecchio, Daniela Banaj, Nerisa Cheng, Jingliang Liu, Zhening Yang, Jie Gonul, Ali Saffet Uslu, Ozgul Burhanoglu, Birce Begum Demir, Aslihan Uyar Rootes-Murdy, Kelly Calhoun, Vince D. Sim, Kang Green, Melissa Quidé, Yann Chung, Young Chul Kim, Woo-Sung Sponheim, Scott R. Demro, Caroline Ramsay, Ian S. Iasevoli, Felice de Bartolomeis, Andrea Barone, Annarita Ciccarelli, Mariateresa Brunetti, Arturo Cocozza, Sirio Pontillo, Giuseppe Tranfa, Mario Park, Min Tae M. Kirschner, Matthias Georgiadis, Foivos Kaiser, Stefan Van Rheenen, Tamsyn E. Rossell, Susan L. Hughes, Matthew Woods, William Carruthers, Sean P. Sumner, Philip Ringin, Elysha Spaniel, Filip Skoch, Antonin Tomecek, David Homan, Philipp Homan, Stephanie Omlor, Wolfgang Cecere, Giacomo Nguyen, Dana D. Preda, Adrian Thomopoulos, Sophia I. Jahanshad, Neda Cui, Long-Biao Yao, Dezhong Thompson, Paul M. Turner, Jessica A. van Erp, Theo G. M. Cheng, Wei Feng, Jianfeng |
author_sort |
Jiang, Yuchao |
title |
Neurostructural subgroup in 4291 individuals with schizophrenia identified using the subtype and stage inference algorithm |
title_short |
Neurostructural subgroup in 4291 individuals with schizophrenia identified using the subtype and stage inference algorithm |
title_full |
Neurostructural subgroup in 4291 individuals with schizophrenia identified using the subtype and stage inference algorithm |
title_fullStr |
Neurostructural subgroup in 4291 individuals with schizophrenia identified using the subtype and stage inference algorithm |
title_full_unstemmed |
Neurostructural subgroup in 4291 individuals with schizophrenia identified using the subtype and stage inference algorithm |
title_sort |
neurostructural subgroup in 4291 individuals with schizophrenia identified using the subtype and stage inference algorithm |
publishDate |
2024 |
url |
https://hdl.handle.net/10356/181258 |
_version_ |
1816858970854260736 |
spelling |
sg-ntu-dr.10356-1812582024-11-24T15:39:30Z Neurostructural subgroup in 4291 individuals with schizophrenia identified using the subtype and stage inference algorithm Jiang, Yuchao Luo, Cheng Wang, Jijun Palaniyappan, Lena Chang, Xiao Xiang, Shitong Zhang, Jie Duan, Mingjun Huang, Huan Gaser, Christian Nemoto, Kiyotaka Miura, Kenichiro Hashimoto, Ryota Westlye, Lars T. Richard, Genevieve Fernandez-Cabello, Sara Parker, Nadine Andreassen, Ole A. Kircher, Tilo Nenadić, Igor Stein, Frederike Thomas-Odenthal, Florian Teutenberg, Lea Usemann, Paula Dannlowski, Udo Hahn, Tim Grotegerd, Dominik Meinert, Susanne Lencer, Rebekka Tang, Yingying Zhang, Tianhong Li, Chunbo Yue, Weihua Zhang, Yuyanan Yu, Xin Zhou, Enpeng Lin, Ching-Po Tsai, Shih-Jen Rodrigue, Amanda L. Glahn, David Pearlson, Godfrey Blangero, John Karuk, Andriana Pomarol-Clotet, Edith Salvador, Raymond Fuentes-Claramonte, Paola Garcia-León, María Ángeles Spalletta, Gianfranco Piras, Fabrizio Vecchio, Daniela Banaj, Nerisa Cheng, Jingliang Liu, Zhening Yang, Jie Gonul, Ali Saffet Uslu, Ozgul Burhanoglu, Birce Begum Demir, Aslihan Uyar Rootes-Murdy, Kelly Calhoun, Vince D. Sim, Kang Green, Melissa Quidé, Yann Chung, Young Chul Kim, Woo-Sung Sponheim, Scott R. Demro, Caroline Ramsay, Ian S. Iasevoli, Felice de Bartolomeis, Andrea Barone, Annarita Ciccarelli, Mariateresa Brunetti, Arturo Cocozza, Sirio Pontillo, Giuseppe Tranfa, Mario Park, Min Tae M. Kirschner, Matthias Georgiadis, Foivos Kaiser, Stefan Van Rheenen, Tamsyn E. Rossell, Susan L. Hughes, Matthew Woods, William Carruthers, Sean P. Sumner, Philip Ringin, Elysha Spaniel, Filip Skoch, Antonin Tomecek, David Homan, Philipp Homan, Stephanie Omlor, Wolfgang Cecere, Giacomo Nguyen, Dana D. Preda, Adrian Thomopoulos, Sophia I. Jahanshad, Neda Cui, Long-Biao Yao, Dezhong Thompson, Paul M. Turner, Jessica A. van Erp, Theo G. M. Cheng, Wei Feng, Jianfeng Lee Kong Chian School of Medicine (LKCMedicine) Yong Loo Lin School of Medicine, NUS Institute of Mental Health, Singapore Medicine, Health and Life Sciences Nuclear magnetic resonance imaging Schizophrenia Machine learning can be used to define subtypes of psychiatric conditions based on shared biological foundations of mental disorders. Here we analyzed cross-sectional brain images from 4,222 individuals with schizophrenia and 7038 healthy subjects pooled across 41 international cohorts from the ENIGMA, non-ENIGMA cohorts and public datasets. Using the Subtype and Stage Inference (SuStaIn) algorithm, we identify two distinct neurostructural subgroups by mapping the spatial and temporal 'trajectory' of gray matter change in schizophrenia. Subgroup 1 was characterized by an early cortical-predominant loss with enlarged striatum, whereas subgroup 2 displayed an early subcortical-predominant loss in the hippocampus, striatum and other subcortical regions. We confirmed the reproducibility of the two neurostructural subtypes across various sample sites, including Europe, North America and East Asia. This imaging-based taxonomy holds the potential to identify individuals with shared neurobiological attributes, thereby suggesting the viability of redefining existing disorder constructs based on biological factors. Published version This work was supported by the grant from Science and Technology Innovation 2030-Brain Science and Brain-Inspired Intelligence Project (No. 2022ZD0212800 to YJ). This work was supported by National Natural Science Foundation of China (No. 82202242 to YJ, 82071997 to WC). This work was supported by the projects from China Postdoctoral Science Foundation (No. BX2021078 and 2021M700852 to YJ). This work was supported by the Shanghai Rising-Star Program (No. 21QA1408700 to WC) and the Shanghai Sailing Program (22YF1402800 to YJ) from Shanghai Science and Technology Committee. This work was supported by National Key R&D Program of China (No. 2019YFA0709502 to JF, 2022ZD0208500 to DY). This work is supported by the CAMS Innovation Fund for Medical Sciences (no. 2019-I2M-5-039 to CLuo). This work was supported by the grant from Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX01 to JF), ZJ Lab, Shanghai Center for Brain Science and Brain-Inspired Technology, and the grant from the 111 Project (No. B18015 to JF). 2024-11-19T07:21:39Z 2024-11-19T07:21:39Z 2024 Journal Article Jiang, Y., Luo, C., Wang, J., Palaniyappan, L., Chang, X., Xiang, S., Zhang, J., Duan, M., Huang, H., Gaser, C., Nemoto, K., Miura, K., Hashimoto, R., Westlye, L. T., Richard, G., Fernandez-Cabello, S., Parker, N., Andreassen, O. A., Kircher, T., ...Feng, J. (2024). Neurostructural subgroup in 4291 individuals with schizophrenia identified using the subtype and stage inference algorithm. Nature Communications, 15(1), 5996-. https://dx.doi.org/10.1038/s41467-024-50267-3 2041-1723 https://hdl.handle.net/10356/181258 10.1038/s41467-024-50267-3 39013848 2-s2.0-85199016346 1 15 5996 en Nature Communications © 2024 The Author(s). Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/ licenses/by/4.0/. application/pdf |