Hamiltonian non-Hermicity: accurate dynamics with the multiple Davydov D2 Ansätze

We examine the applicability of the numerically accurate method of time dependent variation with multiple Davydov Ansätze (mDA) to non-Hermitian systems. As illustrative examples, three systems of interest have been studied, a non-Hermitian system of dissipative Landau-Zener transitions, a non-Hermi...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhang, Lixing, Shen, Kaijun, Yan, Yiying, Sun, Kewei, Gelin, Maxim F., Zhao, Yang
Other Authors: School of Materials Science and Engineering
Format: Article
Language:English
Published: 2024
Subjects:
Online Access:https://hdl.handle.net/10356/181268
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-181268
record_format dspace
spelling sg-ntu-dr.10356-1812682024-11-22T15:46:50Z Hamiltonian non-Hermicity: accurate dynamics with the multiple Davydov D2 Ansätze Zhang, Lixing Shen, Kaijun Yan, Yiying Sun, Kewei Gelin, Maxim F. Zhao, Yang School of Materials Science and Engineering Physics Hermitian operator Quantum computing We examine the applicability of the numerically accurate method of time dependent variation with multiple Davydov Ansätze (mDA) to non-Hermitian systems. As illustrative examples, three systems of interest have been studied, a non-Hermitian system of dissipative Landau-Zener transitions, a non-Hermitian multimode Jaynes-Cummings model, and a dissipative Holstein-Tavis-Cummings model, all of which are shown to be effectively described by the mDA method. Our findings high light the versatility of the mDA as a powerful numerical tool for investigating complex many-body non-Hermitian systems, which can be extended to explore diverse phenomena such as skin effects, excited-state dynamics, and spectral topology in the non-Hermitian field. Ministry of Education (MOE) Submitted/Accepted version M.F.G. acknowledges the support from the National Natural Science Foundation of China (Grant No. 22373028). Support from the Singapore Ministry of Education Academic Research Fund Tier 1 (Grant Nos. RG87/20 and RG2/24) is also gratefully acknowledged. 2024-11-21T04:39:19Z 2024-11-21T04:39:19Z 2024 Journal Article Zhang, L., Shen, K., Yan, Y., Sun, K., Gelin, M. F. & Zhao, Y. (2024). Hamiltonian non-Hermicity: accurate dynamics with the multiple Davydov D2 Ansätze. Journal of Chemical Physics, 161(19), 194108-. https://dx.doi.org/10.1063/5.0243861 0021-9606 https://hdl.handle.net/10356/181268 10.1063/5.0243861 19 161 194108 en RG87/20 RG2/24 Journal of Chemical Physics © 2024 The Author(s). Published under an exclusive license by AIP Publishing. All rights reserved. This article may be downloaded for personal use only. Any other use requires prior permission of the copyright holder. The Version of Record is available online at http://doi.org/10.1063/5.0243861. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Physics
Hermitian operator
Quantum computing
spellingShingle Physics
Hermitian operator
Quantum computing
Zhang, Lixing
Shen, Kaijun
Yan, Yiying
Sun, Kewei
Gelin, Maxim F.
Zhao, Yang
Hamiltonian non-Hermicity: accurate dynamics with the multiple Davydov D2 Ansätze
description We examine the applicability of the numerically accurate method of time dependent variation with multiple Davydov Ansätze (mDA) to non-Hermitian systems. As illustrative examples, three systems of interest have been studied, a non-Hermitian system of dissipative Landau-Zener transitions, a non-Hermitian multimode Jaynes-Cummings model, and a dissipative Holstein-Tavis-Cummings model, all of which are shown to be effectively described by the mDA method. Our findings high light the versatility of the mDA as a powerful numerical tool for investigating complex many-body non-Hermitian systems, which can be extended to explore diverse phenomena such as skin effects, excited-state dynamics, and spectral topology in the non-Hermitian field.
author2 School of Materials Science and Engineering
author_facet School of Materials Science and Engineering
Zhang, Lixing
Shen, Kaijun
Yan, Yiying
Sun, Kewei
Gelin, Maxim F.
Zhao, Yang
format Article
author Zhang, Lixing
Shen, Kaijun
Yan, Yiying
Sun, Kewei
Gelin, Maxim F.
Zhao, Yang
author_sort Zhang, Lixing
title Hamiltonian non-Hermicity: accurate dynamics with the multiple Davydov D2 Ansätze
title_short Hamiltonian non-Hermicity: accurate dynamics with the multiple Davydov D2 Ansätze
title_full Hamiltonian non-Hermicity: accurate dynamics with the multiple Davydov D2 Ansätze
title_fullStr Hamiltonian non-Hermicity: accurate dynamics with the multiple Davydov D2 Ansätze
title_full_unstemmed Hamiltonian non-Hermicity: accurate dynamics with the multiple Davydov D2 Ansätze
title_sort hamiltonian non-hermicity: accurate dynamics with the multiple davydov d2 ansätze
publishDate 2024
url https://hdl.handle.net/10356/181268
_version_ 1816859064356831232