PipeSC: a split computing framework for pipeline implementations considering independent input batch sizes
Split computing has gained attention in deep learning as a scheme for edge computing. Split computing splits a model into head and tail models. The head model is executed on the local device and its output sent to the edge server. This output forms the input to the tail model that resides on the edg...
Saved in:
主要作者: | |
---|---|
其他作者: | |
格式: | Thesis-Master by Coursework |
語言: | English |
出版: |
Nanyang Technological University
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/181324 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
成為第一個發表評論!