Quaternionic Hilbert spaces and operator theory
This report serves to study Hilbert spaces and operator theory over skew fields. In particular, we will study these topics over the quaternions since it has been well-developed, and explore the properties of quaternionic linear operators, adjoint and normal operators. Operators over quaternionic Hil...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
مؤلفون آخرون: | |
التنسيق: | Final Year Project |
اللغة: | English |
منشور في: |
Nanyang Technological University
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/181339 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | This report serves to study Hilbert spaces and operator theory over skew fields. In particular, we will study these topics over the quaternions since it has been well-developed, and explore the properties of quaternionic linear operators, adjoint and normal operators. Operators over quaternionic Hilbert spaces are important when exploring certain topics, which include functional analysis, Fourier transform, and quantum mechanics. An application of operators over the quaternions is to rotate vectors in 3-dimensional space by conjugating said vectors with the axis of rotation. |
---|