Quaternionic Hilbert spaces and operator theory

This report serves to study Hilbert spaces and operator theory over skew fields. In particular, we will study these topics over the quaternions since it has been well-developed, and explore the properties of quaternionic linear operators, adjoint and normal operators. Operators over quaternionic Hil...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Lim, Zhi Xing
مؤلفون آخرون: Wu Guohua
التنسيق: Final Year Project
اللغة:English
منشور في: Nanyang Technological University 2024
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/181339
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:This report serves to study Hilbert spaces and operator theory over skew fields. In particular, we will study these topics over the quaternions since it has been well-developed, and explore the properties of quaternionic linear operators, adjoint and normal operators. Operators over quaternionic Hilbert spaces are important when exploring certain topics, which include functional analysis, Fourier transform, and quantum mechanics. An application of operators over the quaternions is to rotate vectors in 3-dimensional space by conjugating said vectors with the axis of rotation.