Origin of a topotactic reduction effect for superconductivity in infinite-layer nickelates

Topotactic reduction utilizing metal hydrides as reagents has emerged as an effective approach to achieve exceptionally low oxidization states of metal ions and unconventional coordination networks. This method opens avenues to the development of entirely new functional materials, with one notable e...

全面介紹

Saved in:
書目詳細資料
Main Authors: Zeng, Shengwei, Tang, Chi Sin, Luo, Zhaoyang, Chow, Lin Er, Lim, Zhi Shiuh, Prakash, Saurav, Yang, Ping, Diao, Caozheng, Yu, Xiaojiang, Xing, Zhenxiang, Ji, Rong, Yin, Xinmao, Li, Changjian, Wang, Renshaw Xiao, He, Qian, Breese, Mark B. H., Ariando, A., Liu, Huajun
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2024
主題:
在線閱讀:https://hdl.handle.net/10356/181367
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Topotactic reduction utilizing metal hydrides as reagents has emerged as an effective approach to achieve exceptionally low oxidization states of metal ions and unconventional coordination networks. This method opens avenues to the development of entirely new functional materials, with one notable example being the infinite-layer nickelate superconductors. However, the reduction effect on the atomic reconstruction and electronic structures-crucial for superconductivity-remains largely unresolved. We designed two sets of control Nd_{0.8}Sr_{0.2}NiO_{2} thin films and used secondary ion mass spectroscopy to highlight the absence of reduction-induced hydrogen intercalation. X-ray absorption spectroscopy revealed a significant linear dichroism with dominant Ni 3d_{x2-y2} orbitals on superconducting samples, indicating a Ni single-band nature of infinite-layer nickelates. Consistent with the superconducting T_{c}, the Ni 3d orbitals asymmetry manifests a domelike dependence on the reduction duration. Our results unveil the critical role of reduction in modulating the Ni-3d orbital polarization and its impact on the superconducting properties.