Soft robotic honeycomb-velcro jamming gripper design
In this paper, using a honeycomb-velcro structure to generate a novel jamming gripper is explored. Each finger of the gripper consists of multi-layers with a honeycomb sandwich structure acting as a core wrapped by a fabric sheet and sealed by a latex membrane. This structure can transit between unj...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/181385 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | In this paper, using a honeycomb-velcro structure to generate a novel jamming gripper is explored. Each finger of the gripper consists of multi-layers with a honeycomb sandwich structure acting as a core wrapped by a fabric sheet and sealed by a latex membrane. This structure can transit between unjammed (flexible) and jammed (rigid) states thanks to the vacuum pressure. Various materials of honeycomb structure, fabric, and reinforcements are investigated to seek optimal combinations for making the jamming fingers. Then, such fingers are deployed in experiments to evaluate the stiffness and the surface friction with different loads in terms of with or without vacuum. Vacuum pressure boosts the stiffness and friction of all the jamming fingers compared with the without-vacuum case. Attached to a gripper, the jamming finger shows good performance in diverse manipulation with food, a metal component, a toy, a can, and a bottle. Furthermore, the variable-stiffness finger under vacuum pressure can be utilized to perform assembly and installation operations such as pushing a bolt into an aligned hole. |
---|