Efficient approximate nearest neighbor search on high-dimensional vectors by graph and quantization
Approximate nearest neighbor (ANN) search in high-dimensional Euclidean space has a broad range of applications. Among existing ANN algorithms, graph-based methods currently show superior performance in terms of the time-accuracy trade-off. Yet, they have performance bottlenecks due to the random me...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis-Master by Research |
Language: | English |
Published: |
Nanyang Technological University
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/181650 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Approximate nearest neighbor (ANN) search in high-dimensional Euclidean space has a broad range of applications. Among existing ANN algorithms, graph-based methods currently show superior performance in terms of the time-accuracy trade-off. Yet, they have performance bottlenecks due to the random memory accesses caused by the searching process on the graph index and the cost of computing exact distances between high-dimensional vectors. To relieve the aforementioned issues, a recent method named NGT-QG makes an initial attempt by integrating quantization and graph. It (1) replicates and stores the quantization codes of a vertex's neighbors compactly so that they can be accessed sequentially; and (2) uses a SIMD-based implementation named FastScan to efficiently estimate distances based on the quantization codes in batch for guiding the searching process. While NGT-QG achieves promising improvements over the vanilla graph-based methods, it has not fully unleashed the potential of integrating quantization and graph. For instance, it entails a re-ranking step to compute exact distances at the end, which introduces extra random memory accesses; its graph structure is not jointly designed considering the in-batch nature of FastScan, which causes wastes of computation in searching.
In this work, we present a new method named SymphonyQG, which targets more symphonious integration of quantization and graph (e.g., it avoids an explicit re-ranking step and refines the graph structure to be more aligned with FastScan). Based on our experimental results on several real-world datasets, SymphonyQG establishes a new state of the art in terms of the query performance. |
---|