Study of fluid-structure interaction on oscillating triangle wedge in water tunnel

This paper investigates the interaction of the fluid structure on the continuous oscillating equilateral triangle wedge in the uniform flow through dye flow visualization, phaseaveraged Particle Image Velocimetry (PIV) and force and torque measurements in the water tunnel. This particular fluid-s...

Full description

Saved in:
Bibliographic Details
Main Author: Hazwan Amin.
Other Authors: Sutthiphong Srigrarom
Format: Final Year Project
Language:English
Published: 2009
Subjects:
Online Access:http://hdl.handle.net/10356/18173
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-18173
record_format dspace
spelling sg-ntu-dr.10356-181732023-03-04T18:55:29Z Study of fluid-structure interaction on oscillating triangle wedge in water tunnel Hazwan Amin. Sutthiphong Srigrarom School of Mechanical and Aerospace Engineering DRNTU::Engineering::Mechanical engineering::Fluid mechanics This paper investigates the interaction of the fluid structure on the continuous oscillating equilateral triangle wedge in the uniform flow through dye flow visualization, phaseaveraged Particle Image Velocimetry (PIV) and force and torque measurements in the water tunnel. This particular fluid-structure interaction phenomenon is the continuous angular oscillation of a centrally-pivoted equilateral triangular cylinder, under uniform two-dimensional flow with initial perturbation. On the windward side of the cylinder, a vortex was formed at the sharp edges of the cylinder during the initial phase, whereas on the leeward side, the flow stayed attached. The phase-averaged Particle Image Velocimetry (PIV) measurements are also presented. PIV results show the interchange of flow patterns from that over a flat plate to flow past a sharp edge and vice versa as predicted. The PIV system used was DANTEC Dynamics ND-YAG. The wave length of this green light laser produced was 532 nm. The seeding particle was PSP Polyamide, 50 μm diameter. The software used for the PIV analysis was DANTEC DynamicStudio V1.45. An equilateral triangular cylinder of 30cm long and 10cm wide made up of plexiglass was used. The free-stream velocity was 16 cm/s. The period of the full oscillation cycle was 5.72 second. The corresponding Reynolds number based on width was 16000. Likewise, the Strouhal number was 0.108. The PIV plots shown were from the half-cycle (counter-clockwise motion) oscillation. The torque-angular position plot shows the stable oscillation manner. When the wedge moves in counter-clockwise motion (from +max to -max), the moment changes sign from positive to negative. The 4 initial moment is rather constant (~ + M0) until the wedge moves pass the equilibrium point ( = 0), the moment reduces to opposite value (-M0). At the -max position, the moment is negative, causing the wedge to move back (clockwise), i.e. -max to +max, and vice versa. Bachelor of Engineering (Mechanical Engineering) 2009-06-22T02:51:12Z 2009-06-22T02:51:12Z 2009 2009 Final Year Project (FYP) http://hdl.handle.net/10356/18173 en Nanyang Technological University 89 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Mechanical engineering::Fluid mechanics
spellingShingle DRNTU::Engineering::Mechanical engineering::Fluid mechanics
Hazwan Amin.
Study of fluid-structure interaction on oscillating triangle wedge in water tunnel
description This paper investigates the interaction of the fluid structure on the continuous oscillating equilateral triangle wedge in the uniform flow through dye flow visualization, phaseaveraged Particle Image Velocimetry (PIV) and force and torque measurements in the water tunnel. This particular fluid-structure interaction phenomenon is the continuous angular oscillation of a centrally-pivoted equilateral triangular cylinder, under uniform two-dimensional flow with initial perturbation. On the windward side of the cylinder, a vortex was formed at the sharp edges of the cylinder during the initial phase, whereas on the leeward side, the flow stayed attached. The phase-averaged Particle Image Velocimetry (PIV) measurements are also presented. PIV results show the interchange of flow patterns from that over a flat plate to flow past a sharp edge and vice versa as predicted. The PIV system used was DANTEC Dynamics ND-YAG. The wave length of this green light laser produced was 532 nm. The seeding particle was PSP Polyamide, 50 μm diameter. The software used for the PIV analysis was DANTEC DynamicStudio V1.45. An equilateral triangular cylinder of 30cm long and 10cm wide made up of plexiglass was used. The free-stream velocity was 16 cm/s. The period of the full oscillation cycle was 5.72 second. The corresponding Reynolds number based on width was 16000. Likewise, the Strouhal number was 0.108. The PIV plots shown were from the half-cycle (counter-clockwise motion) oscillation. The torque-angular position plot shows the stable oscillation manner. When the wedge moves in counter-clockwise motion (from +max to -max), the moment changes sign from positive to negative. The 4 initial moment is rather constant (~ + M0) until the wedge moves pass the equilibrium point ( = 0), the moment reduces to opposite value (-M0). At the -max position, the moment is negative, causing the wedge to move back (clockwise), i.e. -max to +max, and vice versa.
author2 Sutthiphong Srigrarom
author_facet Sutthiphong Srigrarom
Hazwan Amin.
format Final Year Project
author Hazwan Amin.
author_sort Hazwan Amin.
title Study of fluid-structure interaction on oscillating triangle wedge in water tunnel
title_short Study of fluid-structure interaction on oscillating triangle wedge in water tunnel
title_full Study of fluid-structure interaction on oscillating triangle wedge in water tunnel
title_fullStr Study of fluid-structure interaction on oscillating triangle wedge in water tunnel
title_full_unstemmed Study of fluid-structure interaction on oscillating triangle wedge in water tunnel
title_sort study of fluid-structure interaction on oscillating triangle wedge in water tunnel
publishDate 2009
url http://hdl.handle.net/10356/18173
_version_ 1759853919322767360