Personalized federated learning with dynamic clustering and model distillation
Federated learning is a distributed machine learning technique that allows various data sources to work together to train models while keeping their raw data private. However, federated learning faces many challenges when dealing with non-independent and identically distributed (Non-IID) data, espec...
محفوظ في:
المؤلف الرئيسي: | Bao, Junyan |
---|---|
مؤلفون آخرون: | Tay Wee Peng |
التنسيق: | Thesis-Master by Coursework |
اللغة: | English |
منشور في: |
Nanyang Technological University
2025
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/181935 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
مواد مشابهة
-
An empirical study of the inherent resistance of knowledge distillation based federated learning to targeted poisoning attacks
بواسطة: He, Weiyang, وآخرون
منشور في: (2024) -
Peer-to-peer federated learning
بواسطة: Sim, Nicholas Yong Yue
منشور في: (2024) -
FedART: A neural model integrating federated learning and adaptive resonance theory
بواسطة: PATERIA, Shubham, وآخرون
منشور في: (2025) -
Effective intrusion detection in heterogeneous Internet-of-Things networks via ensemble knowledge distillation-based federated learning
بواسطة: Shen, Jiyuan, وآخرون
منشور في: (2024) -
Edge-computing-based knowledge distillation and multitask learning for partial discharge recognition
بواسطة: Ji, Jinsheng, وآخرون
منشور في: (2024)