Beyond collaborative filtering: a relook at taskformulation in recommender systems

Recommender Systems (RecSys) have become indispensable in numerous applications, profoundly influencing our everyday experiences. Despite their practical significance, academic research in RecSys often abstracts the formulation of research tasks from real-world contexts, aiming for a clean proble...

Full description

Saved in:
Bibliographic Details
Main Author: Sun, Aixin
Other Authors: College of Computing and Data Science
Format: Article
Language:English
Published: 2025
Subjects:
Online Access:https://hdl.handle.net/10356/181966
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Recommender Systems (RecSys) have become indispensable in numerous applications, profoundly influencing our everyday experiences. Despite their practical significance, academic research in RecSys often abstracts the formulation of research tasks from real-world contexts, aiming for a clean problem formulation and more generalizable findings. However, it is observed that there is a lack of collective understanding in RecSys academic research. The root of this issue may lie in the simplification of research task definitions, and an overemphasis on modeling the decision outcomes rather than the decision-making process. That is, we often conceptualize RecSys as the task of predicting missing values in a static user-item interaction matrix, rather than predicting a user’s decision on the next interaction within a dynamic, changing, and application-specific context. There exists a mismatch between the inputs accessible to a model and the information available to users during their decision-making process, yet the model is tasked to predict users’ decisions. While collaborative filtering is effective in learning general preferences from historical records, it is crucial to also consider the dynamic contextual factors in practical settings. Defining research tasks based on application scenarios using domain-specific datasets may lead to more insightful findings. Accordingly, viable solutions and effective evaluations can emerge for different application scenarios.