Lithium-ion battery remaining useful life prediction based on random forest machine learning
Accurately forecasting the Remaining Useful Life (RUL) of lithium-ion batteries is essential for maintaining reliability and maximizing the performance of battery powered systems. Traditional Random Forest Regression (RFR) techniques have demonstrated strong accuracy but often face computational cha...
Saved in:
主要作者: | |
---|---|
其他作者: | |
格式: | Thesis-Master by Coursework |
語言: | English |
出版: |
Nanyang Technological University
2025
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/182343 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|