Electrospun polyvinyl alcohol fibres incorporating an antimicrobial gel for enzymatically controlled reactive oxygen species release

Wounds pose a risk to the skin, our body’s primary defence against infections. The rise of antibiotic resistance has prompted the development of novel therapies. RO-101® is an antimicrobial gel that delivers therapeutic levels of hydrogen peroxide (H2O2), a reactive oxygen species, directly to the w...

Full description

Saved in:
Bibliographic Details
Main Authors: Mieles, Joel Yupanqui, Vyas, Cian, Daskalakis, Evangelos, Hassan, Mohamed, Birkett, James, Omar, Abdalla M., Humphreys, Gavin, Diver, Carl, Bartolo, Paulo
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2025
Subjects:
Online Access:https://hdl.handle.net/10356/182455
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Wounds pose a risk to the skin, our body’s primary defence against infections. The rise of antibiotic resistance has prompted the development of novel therapies. RO-101® is an antimicrobial gel that delivers therapeutic levels of hydrogen peroxide (H2O2), a reactive oxygen species, directly to the wound bed. In this study, electrospinning was used to incorporate RO-101® into a polyvinyl alcohol (PVA) sub-micron fibrous mesh that can act as a delivery agent, achieve a sustained release profile, and provide a barrier against infection. Adequate incorporation of this gel into sub-micron fibres was confirmed via nuclear magnetic resonance spectroscopy. Furthermore, scanning electron microscopy exhibited smooth and uniform meshes with diameters in the 200–500 nm range. PVA/RO-101 electrospun meshes generated H2O2 in concentrations exceeding 1 mM/(g·mL) (1 mM = 1 mmol/L) after 24 h, and the role of sterilisation on H2O2 release was evaluated. PVA/RO-101 meshes exhibited antimicrobial activity against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Pseudomonas aeruginosa (P. aeruginosa) bacteria, achieving viable count reductions of up to 1 log unit CFU/mm2 (CFU: colony-forming units). Moreover, these meshes were capable of disrupting biofilm formation, even against multidrug-resistant organisms such as methicillin-resistant S. aureus (MRSA). Furthermore, increasing the RO-101® concentration resulted in higher H2O2 production and an enhanced antimicrobial effect, while fibroblast cell viability and proliferation tests showed a concentration-dependent response with high cytocompatibility at low RO-101® concentrations. This study therefore demonstrates the potential of highly absorbent PVA/RO-101 meshes as potential antimicrobial wound dressings.