Highly rechargeable aqueous Sn-metal-based hybrid-ion batteries
Tin (Sn) metal, with its intrinsic resistance to the hydrogen evolution reaction (HER), holds great promise as an anode for safe and rechargeable aqueous Sn-metal batteries (ASBs). However, the major challenges for their practical deployment include uneven Sn deposition and low Sn2+/Sn4+ reaction re...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2025
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/182656 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Tin (Sn) metal, with its intrinsic resistance to the hydrogen evolution reaction (HER), holds great promise as an anode for safe and rechargeable aqueous Sn-metal batteries (ASBs). However, the major challenges for their practical deployment include uneven Sn deposition and low Sn2+/Sn4+ reaction reversibility. To mitigate these challenges, we design ASBs from both anode and electrolyte. First, a stannophilic silver-coated vertical graphene (Ag-VG) host improves the nucleation kinetics and uniform Sn deposition. Second, a biphasic H2O/ionic liquid (IL) electrolyte confines Sn2+ within the aqueous phase, suppressing the formation of Sn4+ at the cathode side and eliminating the usage of an ion exchange membrane. The biphasic electrolyte and Ag-VG host are coupled with various types of cathodes (herein, halogens, LiCoO2, and Li2MnO4) to fabricate full ASBs. Improved cycling stability and Coulombic efficiency are clearly observed. This work highlights a facile strategy for advancing ASBs. |
---|