Energy-efficient UAV-aided computation offloading on THz band: a MADRL solution
In this paper, the problem of energy-efficient unmanned aerial vehicle (UAV)-assisted computation offloading over the Terahertz (THz) spectrum is investigated. In the studied system, several UAVs are deployed as edge servers to aid task executions for multiple energy-limited computation-scarce terre...
محفوظ في:
المؤلفون الرئيسيون: | , , , , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
2025
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/183054 https://edas.info/p31420 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
الملخص: | In this paper, the problem of energy-efficient unmanned aerial vehicle (UAV)-assisted computation offloading over the Terahertz (THz) spectrum is investigated. In the studied system, several UAVs are deployed as edge servers to aid task executions for multiple energy-limited computation-scarce terrestrial user equipments (UEs). Then, an expected energy efficiency maximization problem is formulated, aiming to jointly optimize UAVs’ trajectories, UEs’ local central processing unit (CPU) clock speeds, UAV-UE associations, time slot slicing, and UEs’ offloading powers. To tackle the considered multi-dimensional optimization problem, the duo-staggered perturbed actor-critic with modular networks (DSPAC-MN) solution in a multi-agent deep reinforcement learning (MADRL) setup, is proposed and tailored, after mapping the original problem into a stochastic (Markov) game. Compared to representative benchmarks in simulations, e.g., multi-agent deep deterministic policy gradient (MADDPG) and multi-agent twin-delayed DDPG (MATD3), the proposed DSPAC-MN can achieve the optimal performance of average energy efficiency, while ensuring 100% safe flights. |
---|