Energy-efficient UAV-aided computation offloading on THz band: a MADRL solution

In this paper, the problem of energy-efficient unmanned aerial vehicle (UAV)-assisted computation offloading over the Terahertz (THz) spectrum is investigated. In the studied system, several UAVs are deployed as edge servers to aid task executions for multiple energy-limited computation-scarce terre...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Li, Yuanjian, Madhukumar, A. S., Tan, Ernest Zheng Hui, Zheng, Gan, Saad, Walid, Aghvami, A. Hamid
مؤلفون آخرون: College of Computing and Data Science
التنسيق: Conference or Workshop Item
اللغة:English
منشور في: 2025
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/183054
https://edas.info/p31420
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
id sg-ntu-dr.10356-183054
record_format dspace
spelling sg-ntu-dr.10356-1830542025-03-18T02:01:47Z Energy-efficient UAV-aided computation offloading on THz band: a MADRL solution Li, Yuanjian Madhukumar, A. S. Tan, Ernest Zheng Hui Zheng, Gan Saad, Walid Aghvami, A. Hamid College of Computing and Data Science 2024 IEEE Global Communications Conference (GLOBECOM 2024) Computer and Information Science Terahertz communication Computation offloading Multi-agent deep reinforcement learning In this paper, the problem of energy-efficient unmanned aerial vehicle (UAV)-assisted computation offloading over the Terahertz (THz) spectrum is investigated. In the studied system, several UAVs are deployed as edge servers to aid task executions for multiple energy-limited computation-scarce terrestrial user equipments (UEs). Then, an expected energy efficiency maximization problem is formulated, aiming to jointly optimize UAVs’ trajectories, UEs’ local central processing unit (CPU) clock speeds, UAV-UE associations, time slot slicing, and UEs’ offloading powers. To tackle the considered multi-dimensional optimization problem, the duo-staggered perturbed actor-critic with modular networks (DSPAC-MN) solution in a multi-agent deep reinforcement learning (MADRL) setup, is proposed and tailored, after mapping the original problem into a stochastic (Markov) game. Compared to representative benchmarks in simulations, e.g., multi-agent deep deterministic policy gradient (MADDPG) and multi-agent twin-delayed DDPG (MATD3), the proposed DSPAC-MN can achieve the optimal performance of average energy efficiency, while ensuring 100% safe flights. Info-communications Media Development Authority (IMDA) National Research Foundation (NRF) Published version This research is supported by the National Research Foundation, Singapore, and Infocomm Media Development Authority under its Future Communications Research & Development Programme (FCP-NTU-RG-2022-014) and the National Research Foundation, Singapore, under its Competitive Research Programme (NRF-CRP23-2019-0005). 2025-03-18T02:01:03Z 2025-03-18T02:01:03Z 2024 Conference Paper Li, Y., Madhukumar, A. S., Tan, E. Z. H., Zheng, G., Saad, W. & Aghvami, A. H. (2024). Energy-efficient UAV-aided computation offloading on THz band: a MADRL solution. 2024 IEEE Global Communications Conference (GLOBECOM 2024). https://hdl.handle.net/10356/183054 https://edas.info/p31420 en FCP-NTU-RG-2022-014 NRF-CRP23- 2019-0005 © IEEE. All rights reserved. All rights reserved. This article may be downloaded for personal use only. Any other use requires prior permission of the copyright holder. The Version of Record is available online at https://edas.info/p31420 application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Computer and Information Science
Terahertz communication
Computation offloading
Multi-agent deep reinforcement learning
spellingShingle Computer and Information Science
Terahertz communication
Computation offloading
Multi-agent deep reinforcement learning
Li, Yuanjian
Madhukumar, A. S.
Tan, Ernest Zheng Hui
Zheng, Gan
Saad, Walid
Aghvami, A. Hamid
Energy-efficient UAV-aided computation offloading on THz band: a MADRL solution
description In this paper, the problem of energy-efficient unmanned aerial vehicle (UAV)-assisted computation offloading over the Terahertz (THz) spectrum is investigated. In the studied system, several UAVs are deployed as edge servers to aid task executions for multiple energy-limited computation-scarce terrestrial user equipments (UEs). Then, an expected energy efficiency maximization problem is formulated, aiming to jointly optimize UAVs’ trajectories, UEs’ local central processing unit (CPU) clock speeds, UAV-UE associations, time slot slicing, and UEs’ offloading powers. To tackle the considered multi-dimensional optimization problem, the duo-staggered perturbed actor-critic with modular networks (DSPAC-MN) solution in a multi-agent deep reinforcement learning (MADRL) setup, is proposed and tailored, after mapping the original problem into a stochastic (Markov) game. Compared to representative benchmarks in simulations, e.g., multi-agent deep deterministic policy gradient (MADDPG) and multi-agent twin-delayed DDPG (MATD3), the proposed DSPAC-MN can achieve the optimal performance of average energy efficiency, while ensuring 100% safe flights.
author2 College of Computing and Data Science
author_facet College of Computing and Data Science
Li, Yuanjian
Madhukumar, A. S.
Tan, Ernest Zheng Hui
Zheng, Gan
Saad, Walid
Aghvami, A. Hamid
format Conference or Workshop Item
author Li, Yuanjian
Madhukumar, A. S.
Tan, Ernest Zheng Hui
Zheng, Gan
Saad, Walid
Aghvami, A. Hamid
author_sort Li, Yuanjian
title Energy-efficient UAV-aided computation offloading on THz band: a MADRL solution
title_short Energy-efficient UAV-aided computation offloading on THz band: a MADRL solution
title_full Energy-efficient UAV-aided computation offloading on THz band: a MADRL solution
title_fullStr Energy-efficient UAV-aided computation offloading on THz band: a MADRL solution
title_full_unstemmed Energy-efficient UAV-aided computation offloading on THz band: a MADRL solution
title_sort energy-efficient uav-aided computation offloading on thz band: a madrl solution
publishDate 2025
url https://hdl.handle.net/10356/183054
https://edas.info/p31420
_version_ 1827070732268470272