PASOT-HRL: probably approximate safety options verification with temporal properties of hierarchical reinforcement learning policy

As the deployment of Artificial Intelligence (AI) agents in real-world applications grows, ensuring their safety is increasingly important. One approach to ensure safety is via safety verification to evaluate the safety probability of an AI agent. This paper presents Probably Approximate Safety Opti...

全面介紹

Saved in:
書目詳細資料
主要作者: Toh, Jing Qiang
其他作者: Arvind Easwaran
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2025
主題:
在線閱讀:https://hdl.handle.net/10356/184131
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English