Causation versus correlation: when does it matter?
Feature engineering is a critical step in the machine learning pipeline, particularly when dealing with high-dimensional datasets where redundant or irrelevant features can degrade performance. It involves either creating new features from the existing dataset or selecting relevant features from...
Saved in:
主要作者: | |
---|---|
其他作者: | |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2025
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/184145 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|