Causation versus correlation: when does it matter?

Feature engineering is a critical step in the machine learning pipeline, particularly when dealing with high-dimensional datasets where redundant or irrelevant features can degrade performance. It involves either creating new features from the existing dataset or selecting relevant features from...

全面介紹

Saved in:
書目詳細資料
主要作者: Ho, Meredydd Ching Wei
其他作者: Lim Wei Yang Bryan
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2025
主題:
在線閱讀:https://hdl.handle.net/10356/184145
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!