Causation versus correlation: when does it matter?
Feature engineering is a critical step in the machine learning pipeline, particularly when dealing with high-dimensional datasets where redundant or irrelevant features can degrade performance. It involves either creating new features from the existing dataset or selecting relevant features from...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
مؤلفون آخرون: | |
التنسيق: | Final Year Project |
اللغة: | English |
منشور في: |
Nanyang Technological University
2025
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/184145 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|