Bayesian inverse problems for partial differential equations with discontinuous coefficients: an adaptive finite element approach
This thesis addresses a challenging class of inverse problems in which one seeks to identify an inclusion within a physical domain by observing noisy, indirect measurements of the underlying system. We adopt a Bayesian framework, treating the unknown parameters as random variables and combining prio...
محفوظ في:
المؤلف الرئيسي: | Oh, Wei Yuan |
---|---|
مؤلفون آخرون: | Hoang Viet Ha |
التنسيق: | Final Year Project |
اللغة: | English |
منشور في: |
Nanyang Technological University
2025
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/184417 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Bayesian inversion for forward partial differential equations in mixed forms
بواسطة: Yang, Juntao
منشور في: (2022) -
Bayesian inverse problems for recovering coefficients of two scale elliptic equations
بواسطة: Hoang, Viet Ha, وآخرون
منشور في: (2021) -
Sparse tensor product finite elements for two scale elliptic and parabolic equations with discontinuous coefficients
بواسطة: Pang, Chen Hui, وآخرون
منشور في: (2025) -
Convergence of Adaptive Finite Element Methods for Semi-Linear Elliptic Partial Differential Equations
بواسطة: Thanatyod Jampawai
منشور في: (2017) -
Convergence of Adaptive Finite Element Methods for Semi-Linear Elliptic Partial Differential Equations
بواسطة: Thanatyod Jampawai
منشور في: (2014)