Exploring extension of HAR volatility prediction

This paper proposes the HAR-weighted model, introducing an inverse standard deviation weighting scheme to the HAR-RV framework - a methodological innovation previously unexplored in the volatility forecasting literature. Our approach systematically mitigates the model’s sensitivity to high-volatilit...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Jiang, Yue
مؤلفون آخرون: Seok Young Hong
التنسيق: Final Year Project
اللغة:English
منشور في: Nanyang Technological University 2025
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/184491
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:This paper proposes the HAR-weighted model, introducing an inverse standard deviation weighting scheme to the HAR-RV framework - a methodological innovation previously unexplored in the volatility forecasting literature. Our approach systematically mitigates the model’s sensitivity to high-volatility periods through variance-adaptive weighting while preserving the interpretability of the original specification. Theoretically, we establish the first formal asymptotic theory for HAR-type estimators under Elastic Net Regularization, resolving important open questions in robust volatility estimation. The model further enhances predictive performance through judiciously designed non-linear transformations. Comprehensive empirical analysis demonstrates consistent outperformance relative to benchmark specifications, which can be applied in the field of Value-at-Risk. This work both advances the methodological frontier of realized volatility modeling and delivers practical improvements for financial risk management.